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An electronic nose using time reduced modelling parameters
for a reliable discrimination of Forane 134a
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Abstract

For lots of applications, new systems based on gas sensor array and called electronic noses are in investigations. To be used for the toxic
gas detection, these systems need to be accurate and must provide a rapid evaluation of the target gas.

In this application, we use metal oxide sensor array to detect, in presence of several humidity rates (18-85%), a refrigerant gas (Forane
134a) which can cause health troubles and greenhouse effects. In this aim, several families of representative variables as the transient or
modelling parameters are extracted from the time sensor responses. These variables are then grouped in learning databases and tested with
recognition methods to select the best association between database and method. Next, unknown gas samples were taken to validate this
choice. The results show the possibility of a good discrimination and also identification of the target gas in presence of different humidity

rate. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Tin oxide gas sensors; TGS sensor array; Humidity effects; Modelling parameters; Data processing; Principal component analysis; Discriminant

factorial analysis

1. Introduction

Our environment is more and more affected by the release
of several chemical pollutants in the atmosphere. These
pollutants (CO,, CH,4, NO,, fluorocarbon, halocarbon, etc.)
can induce greenhouse effects or activate the ozone layer
depletion. So, intense efforts are made to detect the respon-
sible gases [1], and new systems based on smart and portable
multisensors, called electronic noses [2], are widely investi-
gated. As for all the gas detection systems, these electronic
noses require a rapid and efficient detection of the target gases.

Electronic noses are principally composed of an array of
gas sensors coupled with one or several pattern recognition
methods [3,4], like principal component analysis (PCA),
discriminant factorial analysis (DFA) or artificial neural
networks (ANN).

In this work, we are mainly interested in the detection of a
fluorocarbon gas (Forane 134a or R134a) leakage, in an air
conditioned atmosphere. We study an array of six cross-
sensitive tin oxide gas sensors (2 TGS-832, 2 TGS-813, 2
TGS-800) coupled with two pattern recognition methods:
PCA and DFA. These types of sensors are very sensitive but
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their response can be widely influenced by the gas humidity
rate and temperature [5—8]. So, we have characterised the
sensor array under closely controlled variable humidity,
temperature and gas concentration conditions.

To obtain a rapid and reliable gas identification, we have
selected from the experimental characterisation of all the
sensors two families of representative variables: the con-
ductance dynamic slope taken during the first 5 min of the
sensor response, and the modelling parameters deduced
from the double exponential model [9,10] fitting the first
12 min of the sensor response. Three different learning
databases were created using these two families of repre-
sentative variables, separately and together, and then treated
by PCA and DFA methods. The obtained discriminations
were compared to select the best method and the best
database. To conclude, the discrimination capacity of our
chosen system is tested with unknown data taken for dif-
ferent relative humidity rates and gas concentrations.

2. Experimental set-up

The test equipment, designed to characterise our sensor
array under closely controlled experimental conditions, is
chosen as a dynamic flow system [11]. It is mainly composed
of three parts: the gas lines, a humidification system and a
test chamber (Fig. 1).
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Fig. 1. Structure of the complete experimental set-up.

e The gas lines. They are connected to bottles containing
the studied gas (Forane 134a) and its carrier gas (synthetic
air) provided by air products. These lines are controlled
by mass flow controllers via an electronic control unit
(Brooks Instruments).

e The humidification system. It is a divided flow system
including a humidity generator. This generator, based on
the saturation method, allows us to create a saturated air
flow. By mixing this flow to a dry one, we are able to
generate humid air in the relative humidity rate range 5—
85% at 33°C.

o The test chamber. Specially designed circular, it encloses
the sensor array in a regular arrangement to allow short
exchange time, laminar flow and similar gas concentra-
tion conditions. It is placed in a temperature controlled
environment to avoid condensation problems and to
provide stable gas temperature conditions.

For our application, the sensor array is composed of six
Tagushi type sensors: 2 TGS-832, 2 TGS-813, 2 TGS-800
provided by Figaro Engineering Inc. These devices are
placed in half bridge circuits for collecting their conduc-
tance variation. The sensors are supplied with a 10 V circuit
voltage and a 5 V heating voltage providing an operating
temperature at about 420°C according to Figaro Engineer-
ing Inc. sensor operating data sheet. Moreover, in order to
check the created environmental conditions, two other
types of sensors were placed in an appended chamber to
control the atmospheric conditions: a humidity sensor
(Humirel Inc.) and a temperature device (National Semi-
conductor).

The sensor array output signals are then collected via a
data acquisition board (National Instruments) and treated
with pattern recognition methods by using a statistical and
data analysing software (SPSS 10.0, Spss Inc.).

3. Results
3.1. Sensor response

Our sensor array have been characterised under three
controlled atmospheres: humid air, Forane 134a in dry air
noted “dry R134a” and Forane 134a in humid air, noted
“wet R134a”. For these measurements, we have used five
relative humidity rates: 18, 35, 52, 68 and 85% at 33°C. The
range of Forane 134a concentration in synthetic air was 200—
1000 ppm with a 200 ppm step. For these three types of
measurements the sensor array was exposed to the studied
atmosphere for 1 h, and their time-dependent response was
collected. Between each measurement, a synthetic air flow
(dry or humid along with the experiment) is introduced into
the test chamber for 1 h, to purge the whole system and also
to stabilise the sensor sensitive layer in order to reach the
initial conductance value.

For the three studied atmospheres, all the gas sensors offer
a reducing gas behaviour: all the TGS sensor responses are
similar and increase when introducing any studied atmo-
sphere in the test chamber (Fig. 2). From the time sensor
responses, we have deduced the conductance dynamic slope
values measured between the first to the fifth minute of the
gas exposure.
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Fig. 2. Sensor typical response to reducing gas.

In a humid air atmosphere, the conductance dynamic slope
values increase in function of the relative humidity rate (Fig. 3)
which is similar to areducing gas behaviour [9]. In presence of
the reducing gas R134a, the conductance dynamic slopes
increase when increasing the gas concentration (Figs. 4 and 5).
Nevertheless in presence of humidity, this behaviour differs
along with the R134a concentration (Fig. 5): the conductance
dynamic slope values increase rapidly for the two first gas
concentrations (200—400 ppm) and afterwards are slightly
constant, and for a same R134a concentration value, the
conductance dynamic slopes vary randomly when increasing
the humidity rate. We have also noticed that the sensor
responses are masked for the two lowest gas concentrations
(200-400 ppm) at the highest relative humidity rate (85%).

For the three studied atmospheres, the conductance
dynamic slopes corresponding to all the sensors are grouped
in a database noted Base 1.

In previous works, we have shown that the entire sensor
time-dependent behaviour (60 min) for each of the three
studied atmospheres, can be modelled (Fig. 2) in a double
exponential function [9,10] as the following Eq. (1).
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Fig. 3. Dynamic slope response in a humid air atmosphere.
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Fig. 4. Dynamic slope response in a dry R134a atmosphere.

where G is the initial conductance value, ¢ the time, 7, and
T, denote two time constants, A; and A, are two constants
depending on the sensor and gas types.

With such a model, we propose to reduce the sensor
response time. For this purpose, we have fitted the sensor
time-dependent response in several time intervals (0, #;) with
;1 < 60 min. Afterwards, we have extracted the correspond-
ing modelling parameters and used them to estimate the
steady-state sensor response by using Eq. (1). An acceptable
relative error (less than 3%) on the estimated steady-state
conductance value was found for #; = 12 min (Fig. 6).

So, we have fitted the time-dependent response of all the
sensors in only the first 12 min with the previous double
exponential model (Eq. (1)). The values corresponding to the
obtained modelling parameters (G, A;, A, T|, To) were
collected, for each TGS sensor of the array and all the
measurement results. They were grouped in a second data-
base noted Base 2.

For this study, we have treated separately the two data-
bases (Base 1 and Base 2) with two factorial pattern
recognition methods PCA and DFA and compared the
obtained results. Then, we proposed to improve the discri-
minant capacity of our system by coupling the two bases in a
single database (Base 3). In this work, 148 measurements
were made for the three databases.
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Fig. 5. Dynamic slope response in a wet R134a atmosphere.
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Fig. 6. TGS 800 estimated response in a time interval.

3.2. Principal component analysis (PCA)

This data analysis method is an unsupervised technique
usually used with metal oxide gas sensor array applications.
It is applied to a database created with the representative
variables selected from the sensor responses. This database
is considered as a matrix X where the x;; element is the jth
measurement value for the ith considered variable. The main
objective of PCA [12-14] consists of expressing the infor-
mation contained in the database by a lower number of
variables called principal components and then show the
liaison between the measurements. These principal compo-
nents are linear combinations of the original response
vectors X; for the responses of the n variables of all the
studied gas sensors. So the kth principal component is noted.

PCy =) oy 6)
i=1

where o is the eigenvector for the ith variable, and corre-
sponds to the contribution of the original response vectors
for the considered principal components. This contribution
expresses the data variance percentage contained in each
principal component. Generally, these components are cho-
sen to contain the maximum data variance and then to give
the best representation of the considered measurement in an
orthogonal space. In fact, the aim of this technique consists
of removing any redundancy and reducing the dimension-
ality of the studied problem and permit a representation of
the database measurements [14].

In this work, we have first treated the Base 1 with the PCA
method. When using this base we are able to represent
95.5% of the information present in the database with the
two first principal components (Table 1). In fact, with such a
representation, we can observe a slight separation between
the three types of measurements (Fig. 7); the values mea-
sured for the dry R134a atmosphere seem to be well
separated with the wet R134a ones, however, there are
not real boundaries with the humid air measurements. We

Table 1
Eigenvalues for the PCA with the conductance dynamic slope
Principal Eigenvalue Variance (%) Variance
component cumulated (%)
1 4.97 82.87 82.87
2 0.76 12.66 95.53
3 0.12 1.94 97.47
4 9.08E—2 1.51 98.98
5 4.14E-2 0.69 99.67
6 1.94E-2 0.33 100
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Fig. 7. PCA results using the conductance dynamic slope.

have also noted important dispersions in the wet R134a
measurements due to the presence of variable humidity.

When studying Base 2 we found for the two first compo-
nents a representation containing only 34.1% of the infor-
mation in the database (Table 2). With this base, we are not
able to well separate the three types of measurement (Fig. 8).
In fact only the wet R134a measurements are distinctly
separated with the others.

Such representations with PCA are not really sufficient to
well distinguish the three types of measurements. Thus, this
method is not good enough to conclude the capacity of the
array to discriminate correctly the three types of atmo-
spheres. So we propose to apply the DFA method to these
two databases.

Table 2
Eigenvalues for the PCA with the reduced modelling parameters
Principal Eigenvalue Variance (%) Variance
component cumulated (%)
1 5.82 194 19.4
2 441 14.71 34.11
3 3.53 11.78 45.89
4 2.43 8.11 54.00
5 2.30 7.67 61.67
vdots vdots vdots
30 9.8E—4 3.27E-3 100
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Fig. 8. PCA results using the reduced modelling parameters.

3.3. Discriminant factorial analysis (DFA)

The discriminant factorial analysis (DFA) also belongs to
the class of multivariate supervised statistical methods. As
for the PCA method, the database consists of a matrix X
where the x;; element is the jth measurement value for the ith
considered variable. But for the DFA method, all the data-
base elements are affected in an k a priori groups. In this
case, we have to show if the variables are sufficient or not to
allow a well a posteriori classification of the data in their a
priori groups. For this aim, the discriminant procedure
consists of maximising the differences between all the
groups and minimising these differences inside each
group. Afterwards, linear combinations of the variables in
each group are used to create k — 1 new factorial axis (or
discriminant axis) with different data variance percentages.
As for PCA, these variance percentages are given by the
corresponding eigenvalues. A decisive law is then generated.
This law corresponds to a multiple regression equation using
linear combinations of variables as coefficients. With such a
law, we are able to identify and classify new cases [14].

For the first database (Base 1), we have applied the DFA
method by using as a priori groups the three measurement
types. In this case, we are able to well represent 100% of the
information in the database by using two factorial axes as in
PCA (Fig. 9). Three groups are well identified, but a large
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Fig. 9. DFA results using the conductance dynamic slope.

intra-group dispersion still exists. For this base, we are able
to well classify a posteriori 98.6% of the whole database
observations in their a priori group: two errors were found
(Table 3). The first one is due to a low dry R134a gas
concentration (200 ppm) classified as a humid air measure-
ment. The second error corresponds to a wet R134a mea-
surement (18% relative humidity — 400 ppm R134a)
classified in the dry R134a group.

With Base 2, DFA allows us to well represent (Fig. 10)
100% of the total information with two axis. We obtain here
a better separation than for the previous base presented in
Fig. 9 and the classification result is 99.3%. Only one error
was found: a dry R134a measurement (200 ppm) classified
in the humid air group (Table 4).

In the case of Base 2, the classification rate and the
separation between the three groups are better, so we have
used its resultant decisive law to identify a test data set
composed of 25 new test measurements supposed to be
unknown. In this test data set, several measurements with
different humidity rate and gas concentration conditions
were taken (Table 5) and we are able to well identify 15
test cases over the 25 (Fig. 11). All the wet R134a measure-
ments were well identified (9/9). However, only 5/8 dry
R134a measurements and only 1/8 humid air unknown cases
were well identified (Table 5). Many cases appeared to be
misidentified with this base.

Table 3
DFA classification results with the conductance dynamic slope
Groups A posteriori affectation Total (%)
Humid air Dry R134a Wet R134a
A priori groups affectation Humid air 100 0 0 100
Dry R134a 2 98 0 100
Wet R134a 0 22 97.80 100
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Fig. 10. DFA results using the reduced modelling parameters. Fig. 11. Identification of unknown cases using the reduced modelling

parameters with DFA.

Table 4
DFA classification results with the reduced modelling parameters
Groups A posteriori affectation Total (%)
Humid air Dry R134a Wet R134a
A priori groups affectation Humid air 100 0 0 100
Dry R134a 2 98 0 100
Wet R134a 0 0 100 100

Table 5

Unknown cases and their identification results

Unknown cases

Corresponding measurement

Predicted group with Base 2

Predicted group with Base 3

Humid air test Air — 18% RH Wet R134a Humid air
Air — 18% RH Dry R134a Humid air
Air — 35% RH Wet R134a Humid air
Air — 35% RH Dry R134a Humid air
Air — 52% RH Humid air Humid air
Air — 52% RH Dry R134a Humid air
Air — 68% RH Dry R134a Humid air
Air — 68% RH Dry R134a Humid air
Dry R134a test R134a — 200 ppm Dry R134a Dry R134a
R134a — 200 ppm Humid air Dry R134a
R134a — 400 ppm Humid air Dry R134a
R134a — 400 ppm Dry R134a Dry R134a
R134a — 600 ppm Humid air Dry R134a
R134a — 600 ppm Dry R134a Dry R134a
R134a — 800 ppm Dry R134a Dry R134a
R134a — 800 ppm Dry R134a Dry R134a
Wet R134a test R134a — 200 ppm — 18% RH Wet R134a Wet R134a
R134a — 200 ppm — 35% RH Wet R134a Wet R134a
R134a — 200 ppm — 52% RH Wet R134a Wet R134a
R134a — 600 ppm — 18% RH Wet R134a Wet R134a
R134a — 600 ppm — 35% RH Wet R134a Wet R134a
R134a — 600 ppm — 52% RH Wet R134a Wet R134a
R134a — 1000 ppm — 18% RH Wet R134a Wet R134a
R134a — 1000 ppm — 35% RH Wet R134a Wet R134a
R134a — 1000 ppm — 52% RH Wet R134a Wet R134a
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Fig. 12. DFA results using the reduced modelling parameters coupled with
the conductance dynamic slope.
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Fig. 13. Identification of unknown cases using the reduced modelling
parameters and the conductance dynamic slope with DFA.

DFA classification results with the conductance dynamic slope and the reduced modelling parameters

Groups A posteriori affectation Total (%)
Humid air Dry R134a Wet R134a
A priori groups affectation Humid air 100 0 0 100
Dry R134a 2 98 0 100
Wet R134a 0 0 100 100

To improve the identification, we propose to couple the
conductance dynamic slope database (Base 1) with the time
modelling parameters database (Base 2) to form a new base
(Base 3). With this base, we obtain a best discrimination as
we can observe in Fig. 12, where the intra-group dispersion
is very well reduced compared to the two other previous
cases. The a posteriori classification rate obtained here is as
good as for Base 2: 99.3%; the same error is found (Table 6).
We use the same unknown data set to be tested with the new
decisive law created (Fig. 13). In this case all the 25 test
measurements were well identified in their corresponding
groups: 9/9 for the wet R134a group, 8/8 for the dry R134a
group and &/8 in the humid air group (Table 5). So, we are
able with this Base 3 to perfectly identify R134a whatever
the gas concentration or the relative humidity rate of the
atmosphere. This result can be explained by the fact that the
information contained in Base 1 and Base 2 are comple-
mentary and not redundant.

4. Conclusion

In this paper, we have proposed two families of repre-
sentative variables for the discrimination of Forane 134ain a
humidity controlled atmosphere with a TGS sensor array:
the conductance dynamic slope in the first 5 min of the time-
dependent response and the time modelling parameters in

the first 12 min of gas exposure. The values corresponding to
these variables were grouped in two separate databases for
different atmospheres. We have then studied the discrimina-
tion ability of these two families of variables by using PCA
and also DFA methods.

With the first method, we show that it is difficult to obtain
a sufficient separation between the three types of measure-
ments: humid air, dry R134a and wet R134a. So, we have
used the DFA method to improve this separation. With such
a method, we show that the use of these two families of
variables in separate databases allows us to well discriminate
the R134a gas even if the humidity rates or the gas con-
centrations vary but the identification of unknown data is not
completely satisfactory. To obtain a more performed iden-
tification of unknown cases we propose to associate these
bases in a single database. With this base, we show the
ability of our system to well identify R134a in a reduced
time (12 min) whatever its humidity rate or gas concentra-
tion in the studied atmospheres.

So for an electronic nose application we are able to
prevent R134a leakage in an air conditioned atmosphere.
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