
Identifying Contextual Properties of Software Architecture in Cloud Computing

Khaled M. Khan

Qutaibah Malluhi

Department of Computer Science and Engineering

Qatar University, Qatar.

email: {k.khan, qmalluhi}@qu.edu.qa

Abstract—This paper argues that the contextual properties
of cloud-enabled software architecture should be identified
and understood differently by cloud consumers. The existing
architectures are not designed to exploit the contextual prop-
erties of cloud computing. The emergence of cloud computing
virtually forces cloud consumers to re-evaluate their software
architectures in light of the cloud computing context which
requires relinquish control over most architectural components
to cloud providers. In a cloud-enabled architecture, the shift of
ownership of and control over architectural components from
consumers to cloud providers has profound impact on the ways
cloud consumers design their software architecture. In this
perspective, we go beyond the traditional definition of software
architecture, and introduce the concepts of architectural scope,
ownership, and control as the contextual properties of an
architecture.

Keywords-software architecture, control over architectural
components, architectural scope, ownership, contextual prop-
erties, cloud-enabled environment.

I. INTRODUCTION

Cloud computation is a paradigm shift to a new service

based computing similar to the notion of one-stop-services.

It presents a range of simplified services that are flexible

enough for consumers to choose from. The main idea behind

cloud computing is to provide x-as-a-service to organiza-
tions, meaning x could be substituted by any dynamically
scalable service such as software, database, security, hard-

ware, platform, storage etc. Instead of installing application

software in their machines, buying powerful computers and

managing servers, organizations can use application software

as well as computers owned and managed by someone

else. Consumers need not have much expertise in or control

over the computing resources that support the services they

consume.

In spite of the obvious benefits offered by cloud computing,

how organizations will define their software architecture in

cloud-enabled environment is a challenge for the propelling

cloud computing adoption in a wider scale. The software

architecture of an organization has an impact on how it

manages and controls its computing needs and resources

in cloud settings. In current practices, software architecture

consists of several architectural components that are mostly

owned and controlled by the organization that uses it, and are

limited within the boundary of that organization. Organiza-

tions currently have full control over and ownership of their

architectural components. The cloud computing is currently

in the process of changing this practice. This change has

impact on how computing resources are shared, operated,

used, and managed by organizations.

The migration from localized computing environment to

external services presents challenges to software architects.

The challenges include defining contextual properties of

architectural components, finding their impact, understand-

ing the controlling aspects of architectural components, and

making balance between consumer-controlled versus cloud-

controlled architecture. These issues force software archi-

tects to re-consider the existing practices in light of the new

frontier of architectural challenges previously unaccounted

for. Although the contextual properties have no direct ob-

servable manifestation in a software architecture, these do

point out something important for all cloud computing

stakeholders.

In cloud computing, the scope of software architecture

stretches from the organizational to cloud provider’s bound-

aries. It is not only the architectural scope that has changed,
the control over architectural components has shifted to
cloud provider too. The ownership of architectural com-
ponents has also transferred from organizations to cloud

providers. This changing landscape has impact on the suc-

cess of cloud integration and service maintenance. Cloud

consumers need to create a service integration model to

help implement the service evolution and maintenance suc-

cessfully [10]. Without a thorough understanding of the

contextual properties in cloud based environments, such

integration is difficult to achieve.

Cloud computing has disrupted the architectural landscape

that organizations have so far enjoyed in designing and

managing to meet their computing requirements. The lim-

ited understanding of the underlying contextual properties

of software architecture prevents many organizations from

identifying the real impact of cloud-enabled services. Ex-

isting practices of software architecture are either too IT

product-specific or too shallow. A more deeper understand-

ing in cloud-based architecture is required to enable organi-

zations for a wider adoption of this paradigm. The interplay

2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.104

562

2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.104

562

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.104

562

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.104

561



between the software architecture of an organization and

the new characteristics of cloud computing should be well

balanced and understood by all stakeholders [7]. In this

paper, although we primarily focus on software architec-

ture in order to identify its contextual properties in cloud

computing, we also include the infrastructure components

(hardware devices and system software) of the system in

our discussion.

There is no systematic treatment yet of contextual properties

of software architecture in relation to the paradigm shift to

cloud computing. The topic is under-represented in research

forums. Since contemporary research has not focused much

on these properties, this paper attempts to fill this gap.

Some architectural styles are proposed, in particular for

multi-tenant systems such as REST [4] and SPIAR [9].

REST focuses on the communicated data elements, whereas,

SPIAR emphasizes on interactive user interface and on

interaction between client and server. Recently, a new archi-

tectural style called SPOSAD [8] for multi-tenant software

applications has been proposed. It focuses on architectural

constraints, and discussed various trade-offs to consider by

the architect. A cloud computing open architecture model

comprising seven principles has been proposed in [13]. The

main objective of the model is to get cloud vendors, cloud

partners and cloud consumers to work together based on the

seven principles.

In this paper, we apply software architecture concepts and

methodologies to cloud computing in order to understand

the contextual properties and their implications on the de-

sign decisions and inevitable trade-offs. Cloud computing

demands from software architects to rethink about the new

landscape of software architecture that encompasses from

organizational boundaries to cloud providers’ perimeters.

We should understand how architectural properties change

for the dynamically instantiated, distributed and ephemeral

services [1]. The line of thinking presented in this paper is

expected to result in the following benefits:

• First, organizations can map which architectural com-
ponents belong to them and which are to cloud

providers. This will enable organizations to distribute

IT resources and the workload efficiently to its IT staff.

The allocation of resources to specific architectural

components could be done more optimal way. It would,

hence, allow organizations to manage their IT resources

better.

• Second, service level agreements (SLAs) could include
a clear mapping of the ownership of architectural com-

ponents between consumers and cloud providers. Based

on the clear distribution of architectural components

and their control flows, billing could be done effectively

and accurately. The demarcation of responsibility could

be well defined based on the architectural properties

mapped onto the cloud-enabled architecture.

• Third, the thorough knowledge in contextual properties
of software architecture would set the right context

in which the cloud consumer could ask the cloud

provider the right questions about the desired behaviors

of the system. The consumer is in better position to

know which functionality they could customize, which

functionalities could be modified by whom (consumer

or cloud provider) in order to add more capabilities.

Hence, software maintenance and evolution of software

architecture could be well managed.

• Fourth, the distribution of ownership, control and ar-
chitectural scope across organizations would provide

enough information to the consumer to define their own

security and privacy policy around different architec-

tural properties. The consumer could find where they

need to put their own security shield. They can also

know which components of the architecture are under

the security policy of the provider. This would help

organizations to achieve an optimal interoperability of

their security policies across organizational boundaries.

• Finally, the presence or absence of one or more ar-
chitectural elements under their control would help the

cloud consumer to bind the problem space as well as

the solution space in their cloud based architecture. It

would provide organizations with better control on their

architecture as well as technology resources.

Our main goal of this paper is to flesh out contextual

properties of software architecture that are vital for all

stakeholders to understand in a cloud based environment.

The identified properties are expected to contribute to the un-

derstanding of software architecture on cloud based systems.

In the reminder of the paper, section II introduces the basics

of software architecture with an example. In section III,

contextual properties are discussed in relation to cloud based

software architecture. Cloud computing and the associated

architectural issues are discussed along with the major cloud

service models in section IV. Section V presents cloud-

enabled architecture, and shows how various contextual

properties of architectural components have changed. An

example to illustrate the differences between the localized

software architecture and cloud-enabled architecture in terms

of scope, ownership and control is provided in section

VI. A discussion is presented in section VII. Section VIII

concludes the paper.

II. SOFTWARE ARCHITECTURE

A software architecture is a conceptual model that defines

architectural components from which a system is constructed

using rules of interactions and connectors [12]. More pre-

cisely, a software architecture is built from the following

elements [2]:

• Architectural components: A set of architectural com-

ponents that perform some predefined functions, or

represent specific information. These are either the

563563563562



computational units with well-defined interfaces such

as modules, procedures, processes, filters; or pieces of

information such as objects, data, databases, etc.

• Connectors: These are the compositional mechanisms
for gluing the components together in a topology.

Examples of connectors include procedure calls, shared

variables, data flows, messages, communication proto-

cols, events, pipe streams etc.

• Architectural styles: A set of rules that mediate com-

munication, coordination, and interaction among ar-

chitectural components. The choice of interactions is

usually guided by the rules of an architectural style,

and the interaction forms the geometric layout and

control flow of the software system. In other words, an

architectural style defines a vocabulary of architectural

components, their interactions, the control flow among

components [11]. Examples of styles are pipe-and-filter,

process model, object-oriented, etc. Different styles

have different structure and topology.

1. Load 
image

2. Pre 
processing
(Padding)

3. Kernel
initialization  for 

the image

6. Deconvolution

5. Convolution 
with mean 

kernel

4. Convolution
with median 

kernel

ImagePlus

7. Storeing 
processed
 images 

Figure 1. Software architecture of the image processing system.

To set the right context and illustrate the above elements,

consider an example of a system. A company called Image-
Plus processes digital images. The company is specialized
in image smoothing, removing blur from the image, and

detecting edges in the image. The process heavily relies on

the convolution and deconvolution operations. Convolution

involves shifting the kernel (another image with less number
of pixels) over the original image, multiplying the kernel’s

pixel values with the corresponding pixel values of the

original image, and take the sum of these multiplications.

The process uses different types of kernel such as mean

kernels, median kernels etc. Deconvolution is used to remove

blur from a blurred image due to out-of-focus or motion

while capturing the image with a camera.

Figure 1 provides a snapshot of the software architecture

that uses pipes-and-filters architectural style. Filters (dark

oval) are the architectural components, and pipes (arrows)

are the connectors. The numbering of the filters denotes the

sequence of the process. The rules of interaction in this

style are: (i) each filter (component) reads streams of data

on its input, and produces streams on its output channels;

(ii) the pipes (connector) serve as conduits for the streams,

transmitting outputs of one filter to inputs of another; and

(iii) filters are independent and do not share state with other

filters. The shaded rectangle in the background denotes the

scope of the architecture in terms of organizational boundary

of ImagePlus. The system is currently running on Linux

platform using three HP ProLiant ML 350 G6 servers,

and processed images are stored in a Redundant Array of

Independent Disk (RAID). All hardware devices belong to

ImagePlus.

III. CONTEXTUAL PROPERTIES

Cloud based services consumed by organizations usually

require different ways of integrating architectural compo-

nents, different design issues, and different kinds of rea-

soning depending on the operational environment. Although

the business goal remains same, the contextual properties

of software architecture change due to the new operational

environment. We identify the contextual properties of soft-

ware architecture which were previously unaccounted for.

In this example, we can define three contextual properties:

architectural scope, ownership, and control.
In a nutshell, a software component has a scope, it may

belong to a single entity, and it must be controlled by an

entity at different stages of the service. In cloud computing,
an architectural component may be in one or both of these

two stages: on-premise and off-premise. The stage of an
architectural component is said to be on-premise while
it is within the boundary of the consumer’s organization,

whereas, off-premise denotes the stage of the component
while it is in the boundary of the cloud provider. Figure

2(a) shows a template to capture the contextual properties

of an architectural component such as a process, an object,

data, server etc. Figure 2(b) depicts an example showing

that while data in on-premise of the consumer, the scope

and control over the data are held by the consumer who

is the owner of the data. However, the same data is in the

scope of and under the control of the provider although the

ownership remains unchanged while it is off-premise of the

consumer. We now discuss each of the properties.

Off-Premise

  On-Premise

Scope Control Ownership

(a) Template for capturing contextual
      properties 

  Off-Premise   cloud           cloud       

    On-Premise   

   Scope        Control      Ownership

(b) An example of captured contextual 
      properties

consumer   consumer   

An architectual component: a piece of data

consumer

Figure 2. Capturing contextual properties of architectural component

A. Architectural scope
An architectural component can be located in the bound-

ary of either the consumer or cloud provider in either

564564564563



on-premise or off-premise stages respectively. Architectural

scope refers to the physical distribution or geo-location of

the architecture and its components. The topology of an

architecture may spread across several distributed locations

beyond the consumer organization at one of two different

stages (on-premise and/or off-premise). That is, some of

the architectural components may be located outside of

the consumer’s organizational boundary. For example, a

process of a software architecture may run on a server that

belongs to another organization. Similarly, a server in the

hardware architecture of an organization may be installed

in another organization, the disks may be located in a third

organization.

The example architecture (Figure 1) of the image processing

system is located in a single organization, that is, it is

located within the perimeter of ImagePlus. Components in

motion, such as a piece of data, can have two stages in

two different times. A piece of data can travel from the

consumer’s organization to the provider’s boundary. In that

case, it can be in two different stages -once on-premise and

then off-premise while it is processed or stored on cloud.

However, a process or a hardware device can have only one

stage in its lifetime because these components are static. The

scope can also be related to another contextual property –the

ownership.

B. Ownership

Ownership means the possession of architectural compo-

nents along with the right to alienate that possession. More

specifically, the owner possesses an entire architecture or

some of its components is different stages. Ownership does

not change stage from on-premise to off-premise or vice

versa. Figure 2 shows that it is not possible for the data

to have two different ownerships in two different stages.

The ownership of a component is fixed across organizational

boundaries. An organization may use a software architecture

or some of its components which are owned by another

organization. In our example, all filters, pipes, and devices

are owned by ImagePlus. The company does not share the

software components as well the hardware with any other

organizations.

In majority cases, the ownership is related to the scope of
the architecture. If an architecture or its components are

located within the scope of an entity, most likely these are

owned by that entity. However, there are instances where

components are localized within the perimeter of a company,

but the company does not own it. For example, a rented

server along with an application may be located on-premise

of the renting entity, but these are owned by the lending

organization. Ownership has an interesting relationship with

another contextual property, called control.

C. Control

Controls mean the right to make design decision on the

architecture and the architectural components. It is the ability

of the organization to make system related design decisions

that affect the operational as well as structural aspects

of the architecture. The controller of an architecture (or

some of its components) makes the system related decisions

such as maintenance, evolution, fixing bugs, removing and

adding components. The control over a static architectural

component cannot change at different stages of the service

from the on-premise to off-premise, or vice versa. The

control is fixed because static components do not move

within the architecture. However, the control over data-in-

motion can change from on-premise to off-premise, or vice

versa as it travels from one boundary to another.

Control is usually coupled with ownership, and some cases
with the scope of architectural components. That is, if
an organization owns an architecture or its components,

it controls that entity. It is also related to the scope of

the architecture, that is, the boundary of the architecture

may determine who controls it. However, this is not the

case for the rented or outsourced architectural components

because although these are located within the boundary of

an entity, but that entity does not control them. The lending

organization controls these components. In our example,

ImagePlus controls all architectural components, connectors

and infrastructure devices.

A modeling tool such as an E-R diagram can capture

has_scope

ownsOrganization

org_name role location

Components

component_name type

function

M N

1
N

stage

Organization

org_name role location

Component

owner_org component_name type function

Scope

scoping_org controlling_org  stagecomponent_name

a) E-R diagram

b) Relational schema

control_org

Figure 3. A conceptual model and its mapping to schemas.

these contextual properties of a software architecture. The

model can be used to develop relational schema to store

contextual properties such as which organization owns which

component, their scope and control issues. Figure 3 depicts

an example of such conceptual model and the corresponding

schemas. According to the diagram in the figure, an archi-

tectural component can only be owned by one organization,

565565565564



however, a component could be located in more than one

architectural boundary and controlled by more than one

organization in different stages.

The software architecture community never looks software

architecture in light of these contextual properties because

there was no need for these due to uni-ownership, uni-

location, and uni-control of the software architecture. Most

software architectures are localized within the organizational

boundary. In a cloud based environment, it is interesting

to see how the above contextual properties of software

architecture are distributed, have an impact on cloud-enabled

systems, how the architectural styles evolve to address the

cloud characteristics, and how to balance the control over

and ownership of various architectural components. We

explore some of these with an example in the rest of the

paper.

IV. CLOUD SERVICE MODELS

It is vital for the organization to know how control

is shared, allocated, transferred among components, how

organizational data interact with cloud-controlled processes

in a cloud-enabled software architecture, and how the own-

ership affects the design decision of the system. In order

to understand these perspectives, we first need to explore

the properties of major cloud service models. Cloud com-

puting has three major service models: infrastructure-as-a-

service (IaaS), platform-as-a-service (PaaS), and software-

as-a-service (SaaS). Each of these is briefly discussed.

• Infrastructure as a service (IaaS) provides computer
infrastructure -typically hardware devices -as a service,

such as storage, CPU and networking. Cloud consumers

use these hardware devices as a fully outsourced service

instead of buying and managing them. The hardware

devices owned by cloud provider in the form of either

a virtual machine instance or storage. Once created,

the consumer can load any operating system and ap-

plication software they choose on the virtual machine

instance, and put their data on the storage.

• In Platform as a service (PaaS), the consumer uses
the platform provided by the cloud provider. The plat-

form manages the deployment and availability of the

consumer’s application software. It comes with the

underlying hardware, the operating system, and the

development tools that support software development.

Examples of such resources are the development plat-

form, software components, design tools, compilers,

and testing suites. Consumers of PaaS can write their

applications directly to the rented platform, and elasti-

cally scale out as needed [6].

• Software as a service (SaaS) completely removes the
need for the customer to be concerned with anything

such as hardware, platform and software, but applica-

tion capability. The main resource-based architectural

component of the SaaS is the application resources

that support services accessible to cloud computing

consumers. Virtualization is the key architectural com-

ponent in cloud computing for creating and managing

the cloud-specific virtual machines.

In a nutshell, IaaS provides hardware devices, PaaS offers

platform which automatically comes with hardware devices

and the operating environment. SaaS includes the application

software with the underlying hardware devices and platform.

Virtualization technology is the core for enabling the cloud

resource sharing among multiple consumers. Virtualization

manages the pro-creation and allocation of hardware and

software virtualization to the right physical machines of the

consumer [13].

V. CLOUD-ENABLED ARCHITECTURE

A cloud-enabled architecture may comprise the con-

sumer’s on-premise as well as cloud resources such as ser-

vices, middleware, software components, geo-location, and

the interactions of components [5]. This paper focuses on

the relationship between the contextual properties and three

major cloud service models. The control over architectural

components is the most important contextual property in

cloud computing. In cloud architecture, the cloud provider

has their own autonomous control flow of the system. In a

non-cloud environment, the software systems and hardware

devices are localized in the organization that uses it. Orga-

nizations have unified control flow in the architecture tuned

to customize their organizational needs. These two practices

are interwoven in a cloud based system architecture. In cloud

computing, organizations should restructure their existing

architecture to adaptive computing services offered by cloud

computing.

Figure 4 shows the division of high-level architectural

Data

Process
model

Application
software

Operating
platform

Data

Process
model

Application
software

Operating
platform

CPU

Process
model

Application
software

Operating
platform

Process
model

Application
software

IaaS PaaS SaaS

Development
tools

Memory Storage CPU Memory Storage CPU Memory Storage

Network
(infrastructure)

Network
(infrastructure)

Network
(infrastructure)

Data

Figure 4. High-level architectural components of service models, and the
state of control

components of different service models based on control.

The architectural components (infrastructure devices, soft-

ware) are grouped into two distinct types in three cloud

service models: client-controlled components and cloud-
controlled components, represented as ovals and rectangles

566566566565



respectively. The former are those that are controlled by

cloud computing consumers, namely organizations, whereas,

the latter components are controlled and managed by cloud

providers, both in the off-premise stage. Note that data,

process model, application software, operating system are

the components of software architecture, whereas CPUs,

memory, storage and network are the components of infras-

tructure.

In the IaaS model, the consumer-controlled architectural
components typically are data, process model, application

software and operating platform. The provider controls the

hardware devices such as memory, disks, machines, net-

work etc. However, this may change from application to

application. If the consumer receives software services in

addition to infrastructure, the control over most components

is held by the provider. In PaaS, the cloud provider controls

hardware infrastructure, operating platform and the develop-

ment tools, whereas, the cloud consumer controls application

software, process and data. In SaaS, the consumer virtually

relinquishes their control over all architectural components

to the cloud provider.

Images
(data)

Preprocess
(process model)

iPadding
(application 

software)

 Linux 
(operating platform)

QBIC
(process)

IBM System Storage 
DS 8800 

(hardware) 

IBM System z
(hardware) 

IBM Power 795 
(hardware) 

Convolution
(process)

 IBM Rational 
(development

tools)

Kernels
(data)

 Linux 
(operating platform)

xMaths
(application 

software)

Deconvolution
(process)

 Linux 
(operating platform)

DB2 Image 
Extender 
(database 
software)

PaaS: Customizing
           software 
           development

SaaS: Convolution. 
           deconvolution 
           operations

IaaS: Archiving 
          processed
          images

image

Cloud consumer: ImagePlus

Cloud provider: ServicePro

Platform  location: Denver

Porocessing location: Madrid

Disk location: Nanjing

Virtualization Virtualization Virtualization 

kernel

Final images
(data)

Pre-processed 
Images
(data)

Initialized 
kernel
(data)

Figure 5. Image processing architecture consigned on Cloud

VI. AN EXAMPLE

ImagePlus has decided to outsource its image processing

software and hardware to a cloud provider called Ser-
vicePro in order to maximize the competitive advantage
by reducing cost. The ServicePro uses object oriented ar-

chitectural style to process the convolution/deconvolution

operations. ImagePlus also redesigns its pre-processing and

kernel initialization components in object oriented to make

the architecture compliance with the provider. Our example

image processing architecture is now mounted on a cloud

based environment as shown in Figure 5. ImagePlus plans

to use the following ’pay-as-you-go’ cloud service models

with ServicePro:

• A PaaS for the customizing its image padding and
initializing processes. ImagePlus develops and cus-

tomizes its pre-processing software for padding the

edges of the original image. The image is first zero-

padded or row-replicated to include additional rows and

columns at the edges. This pre-processing is done in

accordance with the size of the kernel being selected.

ServicePro provides ImagePlus with the IBM System z

machine, and Linux operating platform along with the

IBM Rational Development tools including compiler,

debugging tools etc (a PaaS). ImagePlus develops a

customized application software called iPadding using
IBM Rational development tools. The output of the

pre-processing and initialization are the padded original

image and the initialized kernel respectively. These two

objects together referred to ’images’ (data) in this paper

are sent to the application software running on the cloud

(a SaaS). See Figure 5. Note that an oval denotes a

consumer-controlled, and a rectangle means a cloud-

controlled architectural component.

Table I summarizes the scope, ownership, and control

Table I
SCOPE, OWNERSHIP AND CONTROL DISTRIBUTION IN PAAS

Component Scope Owner Control Stage

1 IBM Sys z ServicePro ServicePro ServicePro OFF
2 Linux O/Sys ServicePro ServicePro ServicePro OFF
3 IBM Rational ServicePro ServicePro ServicePro OFF
4 iPadding ServicePro ImagePlus ImagePlus OFF
5 Preprocess ServicePro ImagePlus ImagePlus OFF
6 Image ImagePlus ImagePlus ImagePlus ON
7 Image ServicePro ImagePlus ImagePlus OFF
8 Kernel ImagePlus ImagePlus ImagePlus ON
9 Kernel ServicePro ImagePlus ImagePlus OFF

distribution of the architectural components (infras-

tructure, software) along with the stages (on-premise

and off-premise) in PaaS. In the table, ON means

on-premise and OFF denotes off-premise. The table

shows some interesting properties of PaaS in this ex-

ample. The customized software iPadding (developed

by ImagePlus) is located in ServicePro (scope), but

it is owned and controlled by ImagePlus in the off-
premise stage (see row 4). Similarly, the process model
and data (image and kernel) are owned and controlled

by ImagePlus but located in two different boundaries

in two different stages of the service (rows 6 & 8 on-

premise, and rows 7 & 9 off-premise). The images

and kernels are within the boundary of ImagePlus

before processed (on-premise stage) by the software

iPadding (see rows 6 & 8). These objects are in the

perimeter of ServicePro while processed (off-premise

567567567566



stage) by iPadding (see rows 7 & 9). Notice that the

control remains with ImagePlus, although the scope has

changed from on-premise to off-premise (rows 7 & 9).

Images are pre-processed, and kernels are initialized by

the software owned by ImagePlus.

• A SaaS for the convolution and deconvolution op-
erations for digital images. According to the SLAs,
ServicePro provides an IBM Power 795 computer,

xMaths software, and the Linux operating platform

for the operations. ImagePlus will only supply pre-

processed images and the initialized kernel for the

operations. These two input data are fed by the cus-

tomized software iPadding (developed on the PaaS)
to xMaths. Table II summarizes the scope, ownership,
and control distribution of the architectural components

(hardware, software) along with two stages in SaaS.

Notice the last four rows of the table. ImagePlus owns

the images and kernels, but these are located in two

different perimeters in two different stages, namely,

rows 5 & 7 (on-premise stage), and rows 6 & 8

(off-premise stage) respectively. Similarly, the control

over images and kernels has changed according to the

architectural scope. ServicePro gets the control over

these two objects when these are processed by its

machines and software within its boundary (see rows 6

& 8). ImagePro does not have much control over any

components including its data while on the cloud.

Table II
SCOPE, OWNERSHIP AND CONTROL DISTRIBUTION IN SAAS

Component Scope Owner Control Stage

1 IBM ServicePro ServicePro ServicePro OFF
Power 795

2 Linux O/Sys ServicePro ServicePro ServicePro OFF
3 xMaths ServicePro ServicePro ServicePro OFF
4 Convolution ServicePro ServicePro ServicePro OFF

Deconvolution
5 Image ImagePlus ImagePlus ImagePlus ON
6 Image ServicePro ImagePlus ServicePro OFF
7 Kernel ImagePlus ImagePlus ImagePlus ON
8 Kernel ServicePro ImagePlus ServicePro OFF

• An IaaS for the archiving images electronically. Im-
agePlus also uses huge data storage capacity such as

IBM System Storage DS8000 services provided by

ServicePro in order to store its digital images which

are processed and archived by the software xMaths

(SaaS) of ServicePro. The IaaS also comes with the

database software DB2 Image Extender along with the

query processor QBIC. Table III summarizes the scope,

ownership, and control distribution of the architectural

components (hardware, software) in IaaS. The table

shows that ImagePlus owns the final images, although

these are stored in the boundary of the provider (last

row). However, the control on the stored images is held

by ServicePro.

Table III
SCOPE, OWNERSHIP AND CONTROL DISTRIBUTION IN IAAS

Component Scope Owner Control Stage

1 IBM Storage ServicePro ServicePro ServicePro OFF
DS8800

2 Linux O/Sys ServicePro ServicePro ServicePro OFF
3 DB2 Image ServicePro ServicePro ServicePro OFF

Extender
4 QBIC Process ServicePro ServicePro ServicePro OFF
5 Final Image ServicePro ImagePlus ServicePro OFF

VII. DISCUSSION

Figure 5 and three tables suggest that all key architectural

components of ImagePlus are spread across various loca-

tions. Most of these now belong to cloud computing except

the images (data) and the customized software (for the pre

processing) developed on PaaS. A further details of the

models reveal that different processes, disks and hardware

devices used in these services are physically distributed at

various locations (see Figure 5). The PaaS is provided by the

Denver (USA) cloud location of ServicePro; the convolution

and deconvolution operations in SaaS are served by the soft-

ware running on computers located in Madrid (Spain); the

convoluted/deconvoluted images are stored in disks located

in Nanjing (China). Without the contextual properties along

with the entire cloud based software architecture, ImagePlus

may not be aware of these various geo-locations unless

explicitly informed by ServicePro.

The example demonstrates that with the contextual proper-

ties, cloud consumers could clearly identify which architec-

tural components they own and which they don’t. Although

ownership is always associated with control, but this is not

always the case as we have seen in the example. It is clear

that in a cloud-enabled environment, consumers give up

much of their control of their data and processes due to

changing contextual properties in a cloud-based architecture.

Once the consumer’s data leave the organizational boundary,

control is held by the cloud service provider in most cases.

In our example, since ImagePlus has decided to consign all

digital images to ServicePro, it does not have much control

over the processes and images while they are processed and

stored at the cloud sites of ServicePro. ImagePlus has lost

control over majority of its architectural components that

are now being designed, developed, owned, and managed

by ServicePro.

These changes have also other implications. The cloud

consumer also loses flexibility regarding the extension or

modification of processes as its control diminishes. In the

example, ImagePlus has lost some of its flexibility on the

processing of images. It now heavily depends on ServicePro

to do the convolution/deconvolution operations.

Another concern resulted in from the diminishing control,

ownership and scope is the security and privacy. ImagePlus

568568568567



may have valid reasons to worry about the confidentiality

and privacy of their images now stored in devices owned and

managed by ServicePro because the images are persistently

stored in the databases and storages owned and controlled

by ServicePro.

With the mapping of the architectural components on the

cloud based architecture along with the contextual proper-

ties, the cloud consumer could find more about their degree

of control over the architectural components, the ownership

along with the responsibilities and the architectural scope.

These would enable them to plan their resources, design

software architecture addressing their business needs and

monitor the usefulness of the cloud based architecture.

As Grady Booch [3] rightly states in a different context,

an architecture is a declaration of the shared reality that

represents a common vision among a set of stakeholders, and

represented by a set of interlocking models. This is quite true

for a cloud based architecture where both the consumer and

the cloud provider share their understanding of the system in

interlocking artifacts. Software architecture associated with

the contextual properties could enhance the interlocking, and

advance the understanding of the artifacts.

VIII. CONCLUSION

The new way of service consumption in cloud computing

requires the contextual properties of software architecture

to be defined in terms of its key architectural components,

their interactions, the control flow, ownership of compo-

nents, topological distribution of components, geo-location

of architectural components. The contextual properties of

software architecture with clear control flow provide an

organizational alignment to everyone in the organization to

understand the impact of outsourcing computing needs to

cloud. An architecture in a cloud-enabled environment is

expected to show how and where cloud computing services

fit into the organizational IT strategy, and how it has impact

on the way cloud computing delivers services to the business

goals of the organization.

Transplanting a traditionally-structured architecture onto a

cloud platform without right contextual properties would

mean trying to fit a square object into a round hole. The

architecture should be designed such a way that it is easily

understandable and manageable across the organizations. A

balanced need is to be struck in developing architectures that

can be used to provide enough technical information as well

as contextual properties to all stakeholders. Software archi-

tecture might be behind the scenes, but it is highly relevant

to cloud consumers because they could see how satisfying

the services are, provided by the underlying architecture and

its components.

This study demands further investigation to formalize the

contextual properties, and exploration on how to measure

the impact of these properties on software architecture.

It includes formulating methods that could reason about

the presence or absence of these properties in software

architecture and their impact on business processes. We

acknowledge that this topic requires more deeper analysis

in order to flesh out a complete taxonomy of cloud-enabled

software architecture and the associated contextual informa-

tion.

ACKNOWLEDGEMENT

This publication was made possible by the support of an

NPRP grant from the Qatar National Research Fund. The

statements made herein are solely the responsibility of the

authors.

REFERENCES

[1] P. Banarjee and et al., “Everything as a Service: Powering
the New Information Economy”, IEEE Computer, Vol. 44(3),
March 2011, pp. 36 − 43.

[2] L. Bass, P. Clements and R. Kazman: Software Architcture in
Practice. Addison-Wesley, 2003.

[3] G. Booch, “Architecture as a Shared Hallucination”, IEEE
Software, Jan-Feb. 2010, Vol. 27 (1), pp. 95 − 96.

[4] R. Fielding and R. Taylor, “Principled design of themodern
Web architecture,” ACM Transactions on Internet Technology,
Vol. 2(2), 2002, pp. 115 − 150.

[5] G. Kaefer, “Cloud Computing Architecture”, Siemens AG
2010 Corporate Technology, Munich, May 2010.

[6] Y. Khalidi, “Building a Cloud Computing Platform for New
Possibilities”, IEEE Computer, Vol. 44(3), March 2011, pp.
29 − 34.

[7] K. Khan and N. Gangavarapu,“Addressing Enterprise Architec-
ture in Cloud Computing: Issues and Challenges”, IT Cutter
Journal, November 2009, pp. 27 − 33.

[8] H. Koziolek, “The SPOSAD Architectural Style for Multi-
tenant Software Applications,” Procceings of the Ninth Work-
ing IEEE/IFIP Conference on Software Architecture, 2011, pp.
320 − 327.

[9] A. Mesbah and A. van Deursen, “A component and pushbased
architectural style for AJAX applications,” Journal of System
Software, Vol. 81(12), 2008.

[10] M. Papazoglou, V. Andrikopoulos and S. Benbernou, “Man-
aging Evolving Services”, IEEE Software, May/June, 2011, pp.
49 − 55.

[11] D. Perry and A. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Engineering Notes,
Vol. 17(4), Oct 1992, pp. 40 − 52.

[12] M. Shaw and D. Garlan: Software Architecture: Perspectives
on Emerging discipline. Prentice-Hall, 1996.

[13] L. Zhang and Q. Zhou, “CCOA: Cloud Computing Open Ar-
chitecture”, Proceedings of the IEEE International Conference
on Web Services”, 2009, pp. 607 − 616.

569569569568


