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Abstract Considering the existing massive volumes of data processed nowadays and the
distributed nature of many organizations, there is no doubt how vital the need is for dis-
tributed database systems. In such systems, the response time to a transaction or a query is
highly affected by the distribution design of the database system, particularly its methods
for fragmentation, replication, and allocation data. According to the relevant literature, from
the two approaches to fragmentation, namely horizontal and vertical fragmentation, the latter
requires the use of heuristic methods due to it being NP-Hard. Currently, there are a number of
different methods of providing vertical fragmentation, which normally introduce a relatively
high computational complexity or do not yield optimal results, particularly for large-scale
problems. In this paper, because of their distributed and scalable nature, we apply swarm
intelligence algorithms to present an algorithm for finding a solution to vertical fragmentation
problem, which is optimal in most cases. In our proposed algorithm, the relations are tried
to be fragmented in such a way so as not only to make transaction processing at each site as
much localized as possible, but also to reduce the costs of operations. Moreover, we report
on the experimental results of comparing our algorithm with several other similar algorithms
to show that ours outperforms the other algorithms and is able to generate a better solution
in terms of the optimality of results and computational complexity.
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1 Introduction

Due to day technological advancement in hardware, software, and computer networks, as
well as the decentralization of organizations, which sometimes are even distributed across
several continents, the needs of the clients for data processing systems have increased to
the extent that in many cases, centralized systems cannot satisfy the number of demands
anymore. Hence, the tendency toward using distributed systems builds up over time [5].

Design of distributed database systems is basically a multi-criteria optimization problem
with several inter-related problems such as data fragmentation and data allocation. Con-
sidering a range of existing approaches to each of these problems, design of distributed
database systems is highly complicated and usually provides a theoretical justification for
the use of heuristic methods. In order to design distributed database systems, a combination
of operations is required, which is both in the design of centralized database systems and dis-
tribution-allocation aspects [8]. The distribution-allocation aspects include data acquisition,
data replication, and most importantly data fragmentation, and data allocation [6].

The data fragmentation problem consists of decomposing a relation or set of relations into
several fragments in such a way that different user applications preferably run on at most
one fragment. Data fragmentation is generally designed in two ways: horizontal fragmenta-
tion and vertical fragmentation. There is also a mixed fragmentation, which is an integration
of both. Among these, the vertical fragmentation problem has the highest complexity in
terms of being NP-Hard [18]. Therefore, this paper sets out to tackle this problem. There
are many algorithms that solve this problem, which are mainly split into two categories:
attribute-based fragmentation and transaction-based fragmentation [9]. In the first category,
attribute provides the underlying basis of fragmentation; while in the second, transaction is
the basis of fragmentation. There are more advantages to the second category: Firstly, it is
more consequential to use the transaction as the basis of fragmentation. More importantly, as
the number of attributes increases in the first category, the computational costs grow expo-
nentially. Since this problem is avoided in the second category, we use transaction-based
approach to fragment a relation [9].

Due to the high complexity of the vertical fragmentation problem, we need to resort to
heuristic algorithms in order to solve it. Most different types of existing heuristic algorithms
in vertical fragmentation are greedy ones, and only recently, stochastic algorithms such as
genetic algorithms have been widely used. One of the most significant advantages of stochas-
tic algorithms is their scalability. In particular, one class of stochastic algorithms, which has
not yet been addressed to solve the vertical fragmentation problem, is a class of algorithms
based on ant collective behavior. Being an important property for the vertical fragmentation
problem, scalability makes ant-behavior-based algorithms the most desirable candidates to
solve vertical fragmentation problem.

There are some similarities between the data clustering problem and the vertical fragmenta-
tion problem provided that the clusters are considered as regions of the attribute pattern space;
similarities between data clustering problem and vertical fragmentation problem should be
easily traceable. Regions, with more dense patterns, form clusters, which are separated by
regions of lower density. This motivates us to take advantage of these algorithms. The data
clustering problem lies in the fact that the organization of the data into clusters should be
based on their similarities in such a way that the similarities among the data in each clus-
ter exceed those of the other data. However, an important difference distinguishes vertical
fragmentation problem from data clustering. One of the most important issues in vertical
fragmentation problem is to find an optimum number of fragments in order to decrease the
access cost of transactions; whereas in data clustering algorithms, the number of clusters is
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usually fixed [8]. Therefore, we need to apply some changes so as to adapt these algorithms
to the data fragmentation problem.

In this paper, we present an algorithm for finding a solution to vertical fragmentation
problems which is optimal in most cases, in terms of a mixture of ant clustering algorithms
used in data clustering and new heuristic methods. In order to minimize the costs of accessing
the required attributes by means of transactions, our proposed algorithm fragments a relation
to an extent that each transaction uses one fragment or as few fragments as possible, to access
the required attributes.

The remainder of the paper is structured as follows. Section 2 takes a quick glance at the
existing vertical fragmentation algorithms. Through the rest of this paper, a number of new
concepts has been presented, which are subsequently defined in Sect. 3. Section 4 presents a
formal definition of vertical fragmentation and a cost function, followed by a brief description
of ant clustering as well as data clustering problem (which is similar to vertical fragmenta-
tion problem) in Sects. 5 and 6, respectively. Sections 7 and 8 are devoted to our proposed
algorithms, and Sect. 9 refers to an alternative algorithm called GSGR-GA [15] with which
our algorithms have been compared. Section 10 evaluates our algorithm both theoretically
and experimentally. Experimental environment as well as methods of producing test data is
also explained in this section. Finally, the conclusion is presented in Sect. 11.

2 Previous works

At this stage, we briefly explain the earlier related works on vertical fragmentation, which
are also referred to as vertical partitioning or attribute partitioning. There is a wide variety
of applications for vertical partitioning, namely, in all settings in which the performance of
a system is affected by the interaction between data and transaction [34]. This had been first
encountered in file optimization problem, which has been thoroughly studied in the literature
[2,3,12,27,31,42] and then gradually started to appear in the database management systems
so as to enhance the performance of transactions.

Our study concerns the work pioneered by Stocker and Dearnley [13,44] in which they
discuss the implementation of a self-reorganizing database management system that carries
out attribute clustering and show that attribute partitioning is beneficial where the storage
costs are comparably lower than the cost of accessing data. In order to create clusters that
minimize the cost of accessing data, Kennedy [26] employs mathematical models to present
an optimal approach to attribute partitioning through computation of the cost of accessing
data, which exploit transactions. Later, Hoffer and Severance [24] define a measure of pair-
wise affinity between any pair of attributes, based on which partitioning is carried out via
Bond Energy Algorithm [32]. One of the disadvantages of their method is that it leaves the
actual task of clustering for the designer. In [23], Hoffer introduces another method, where
by using non-linear, zero-one programing, the linear combination of storage, retrieval, and
update costs can be minimized. Yet, following another approach, Eisner and Severance [16]
decompose each record into two record segments, i.e., primary and secondary record seg-
ments. First, they compute the cost of access, transfer, and storage of attributes as a non-linear
function of the costs of each segment and then try to minimize it—a task which can be very
costly. This model is extended in [31] by adding a blocking factor to the segments and taking
advantage of programing techniques. Apart from suffering the disadvantages of the previous
model, their work also suffers from lack of an accurate cost of access. Later, partitioning
problem of hierarchal databases was addressed by Schkolnic [41], where the access time for
a given pattern had been minimized.
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In 1979, being a combinatorial problem, vertical partitioning proved to be NP-Hard in
most cases [18]. Therefore, all the previous algorithms for which an optimal solution had been
proposed, proved to suffer from high computational complexity. Hence, they were decided
to be unsuitable particularly for large-scale problems. Subsequently, most of the algorithms
that were introduced attempted to make use of heuristic methods to solve the vertical par-
titioning problem, examples of which are as follows. Hammer and Niamir [19] presented a
heuristic greedy algorithm that offers near-optimal solutions based on attribute characteris-
tics and usage pattern of the file. Navathe et al. [33] presented a binary iteration algorithm,
in each of its iterations. There are two fragments that optimize a cost function to fit a specific
application environment. By including the number, length, and selectivity of attributes and
the cardinality of the relation in computing the cost function, Cornell and Yu [10] extended
their algorithms, in an attempt to reduce the number of disk accesses in the optimal solution.
Ceri et al. [7] proposed a divide and conquer approach, where a division was considered as
an algorithm in [33] and introduced a conquering tool, which uses a detailed cost model.
Navathe et al. also presented a graphical approach in which all fragments are consecutively
generated after each iteration; hence, the complexity is reduced [34].

Thus far, a general objective function that could evaluate the “goodness” of the partitions,
obtained as the result of an algorithm, has been absent. In 1993, Chakravarthyt et al, presented
a formal method for evaluating the results of vertical partitioning algorithms by introducing
such an objective function called partition evaluator (PE) [8].

As stated before, the existing algorithms for vertical fragmentation have been classified
into attribute-based fragmentation and transaction-based algorithms. The algorithms men-
tioned so far were all grouped in attribute-based class. In 1993, by using branch and bound
method, Chu et al. [9] presented a transaction-based optimal binary partitioning algorithm to
minimize the number of accesses to the disk. In another attempt, Pérez et al. [37] were able to
offer a heuristic simulated annealing with threshold accepting algorithm, which could simul-
taneously carry out data fragmentation along with fragment allocation within their related
sites. Their objective was to minimize the cost of transferring, accessing, migrating, and stor-
ing fragments in sites. A genetic algorithm was developed by Song et al. [43], which generated
optimal partitioning by finding an optimum transactions access path to attributes. In [15],
Du et al. suggested a fragmentation algorithm that applied grouping- based genetic algorithms
[17] and took advantage of the PE given by [8] in order to find an optimum solution.

In this paper, a transaction-based algorithm based on ant clustering meta-heuristic is pre-
sented to handle vertical fragmentation problem. Our algorithms adopt PE as their objective
function to be further compared with the GRGS-GA algorithm [15], which has been already
differentiated from genetic and greedy algorithms [15] and reported to have obtained opti-
mum solutions, mainly for large-scale problems. Through categorizing vertical fragmentation
algorithms based on the algorithm type e.g. greedy algorithms, optimal approaches etc., we
have introduced a new category of data fragmentation, namely vertical fragmentation algo-
rithms based on ant behavior.

3 Preliminaries

This section introduces some of the basic notations, concepts, and definitions that are used
in this paper.

3.1 Pertinent parameters considered

Table 1 summarizes the key notations that are used in this paper.
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Table 1 Notation description

Notations Meaning

NA Arity of a relation (number of attributes in a relation)

NT Number of important transactions in a system

NF Number of generated fragments

NFi i th fragment (1 ≤ i ≤ NF )

Ai i th attribute vector (1 ≤ i ≤ NA)

Tk kth transaction (1 ≤ k ≤ NT )

Xik Binary variable to determine whether attribute Ai is accessed by transaction TK

fk Frequency of transaction

aik kth component of attribute Ai

PAi Tk Priority of access of transaction TK to attribute Ai

MAi Tk Measure of need for transaction Tk to attribute Ai

DA,B Measure of dissimilarity between attributes A and B

nFi Number of attributes in fragment NFi

|Ritk | Number of relevant attributes which fragment k can access remotely with respect to fragment i
by transaction t

|Sit | Number of attributes in fragment i that transaction t accesses

AU M Matrix denoting access patterns of transactions to attributes

3.1.1 Fragment-related parameters

Assuming that relations are decomposed into NF fragments, i th fragment (1 ≤ i ≤ NF ) is
denoted by NFi , and number of its attributes is denoted by nFi .

3.1.2 Transaction-related parameters

A determining factor in assigning attributes to fragments is the access patterns of transactions
to attribute. In a typical environment, there is a high number of transactions running. There-
fore, only the important transactions, i.e. 20% of active transactions, which perform 80% of
the total access to data, are taken into account [30]. For NT number of such transactions in the
environment, kth transaction (1 ≤ k ≤ NT ) is denoted by Tk and frequency of its execution
is shown with fk . These transactions make a NT -dimensional space called the transaction
space, in which each transaction Tk represents a dimension. Accesses to attributes by trans-
actions are represented by NA × NT binary matrix AU M , where the value 0 shows that for a
component xi j , transaction j does not need to access attribute i ; however, value 1 shows the
opposite. The attributes that are accessed by transaction Tk are called its relevant attributes,
and the fragment that contains the most relevant attributes is called the local fragment for Tk

[8]. Number of relevant attributes of Tk which are located in its local fragment i is shown
by |Sit |, and number of those that are not located in their local fragment i and should be
accessed remotely by transaction Tk is shown with |Rikt |.

3.1.3 Attribute-related parameters

Assuming that each relation that needs to be fragmented has NA attribute, i th attribute is
denoted by Ai (1 ≤ i ≤ NA). In the transaction space, each attribute is considered as a vector
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so that the more the priority of a transaction, the closer its relevant attributes are. Therefore,
attributes that are located near each other are the ones which are accessed together by some
transactions and have a high chance of appearing in a fragment together.

3.2 Basic concepts

In the following section, the basic concepts used in our work are explained.

Definition 1 Measure of need for transaction Tk to attribute Ai

For each relevant attribute Ai of transaction Tk , the degree of need for Tk to Ai represented
by MAi Tk is equal to the frequency of the execution of Tk ,i.e.

MAi Tk = xik × fk

Definition 2 Access Priority of Transaction Tk to attribute Ai

The access priority of transaction Tk to an attribute Ai is a fraction of the measure of need
for transaction Tk to the measure of need for all transactions i.e.

PAi Tk = MAi Tk√∑NT
j=1 M2

Ai Tj

The higher is the measure of need for transaction Tk to Ai , the more is the access priority
of transaction Tk to attribute Ai . Note that

∑NT
k=1 PAi Tk

2 = 1.

Definition 3 Attribute Vector Ai

Each attribute Ai is defined as a normal vector in the transactions space such that each
vector has NT components and the value of each component (aik) is equal to PAi Tk .

Example 3.1 consider the following attribute vector Ai

T1 T2 T3 T4

Ai 0.8 0.6 0 0

As it can be seen, there are four important transactions named T1, T2, T3, and T4 in a
system and the access numbers of attribute Ai for transactions T1, T2, T3, and T4 equal 0.8,
0.6, 0, and 0, respectively.

Definition 4 Measure of dissimilarity between two attributes
This is defined as the cosine distance between attributes A and B. Since all attribute vectors

are normal, the measure of dissimilarity between attributes A and B is equal to the following:

DA,B = a1.b1 + a2.b2 + · · · + aNT .bNT

Attributes that are accessed together by one or more transactions have high similarity and
low dissimilarity with each other than with the other attributes.

4 Problem specification

4.1 Data fragmentation in distributed database systems

For designing distributed database systems, the cost of transaction processing is reduced by
localizing data transaction references as well as reducing the number of global references
to data. Therefore, vertical fragmentation is defined as dividing relation R into fragments
R1, R2, . . . , Rn with the aim that each transaction runs on one fragment as far as possible,
which results in minimization of the cost of transaction processing [36].
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4.2 Cost model

Generally, two types of cost models are considered for the evaluation of vertical fragmentation
algorithms [15]:

1. Models with cost functions based on transaction access analysis on a model DBMS.
2. Models with cost functions based on an empirical assumption.

In each of these models, the input to the function is AUM matrix. The design of the first
type of the model depends on the database being queried. In this model, the access paths
chosen by the query optimizer—such as joining methods and different scans—are used to
calculate the cost model. Thus, it has high accuracy in estimating the costs of the fragmen-
tation algorithm. The design of the second model is more general and intuitive, as it focuses
more on the costs affected by the partitioning process.

Considering the top-down nature of distributed databases design and given that the infor-
mation about the physical parameters is available not until the implementation stage, appli-
cation of the second method seems to be more efficient for our purpose. Therefore, the cost
model in this paper applies the partition evaluator (PE) cost function [8], which is a model
based on empirical assumption and uses the square-error criterion that is commonly applied
to clustering strategies. To evaluate how “good” an algorithm is, the function of PE cost
model computes its two constituting components, namely, relevant remote attribute access
cost and irrelevant local attribute access cost. Both these costs are calculated via square-error
results.

4.2.1 Irrelevant local attribute access cost (EM
2)

This is a measure of the number of irrelevant attributes in the local fragments of the transac-
tions, which affects the cost as the irrelevant attributes increase the retrieval cost in transaction
processing. This is particularly important when dealing with a high number of tuples which
is calculated as follows [8]:

E2
M =

NF∑

i=1

NT∑

t=1

[
f 2
t × |sit | ×

(
1 − |sit |

ni

)]

4.2.2 Relevant remote attribute access cost (ER
2)

This is a measure of the number of transactions’ relevant attributes that are located in a remote
fragment. This will affect the cost since there is an extra cost for accessing the relevant attri-
butes in non-local fragments which is calculated as follows [8]:

E2
R =

NT∑

t=1

min
NF∑

i=1,i �=k

[
f 2
t × |Ritk | ×

( |Ritk |
nr

itk

)]

Thus, transaction processing costs calculated by PE are the sum of local and remote
transaction processing, i.e.

PE = EM
2 + ER

2.
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In general, it is impossible for transactions to gain access to only one fragment with
no irrelevant attributes. This is because transactions generally tend to access to intersect-
ing yet different sets of attributes. Moreover, given the distributed nature of the problem
and the transactions that run at different sites, it would be impossible to avoid access to a
remote fragment. Therefore, as the ideal transaction is impracticable to achieve, the objective
of attributes partitioning is to minimize the local and remote transaction processing costs.
A more detailed explanation of PE can be found in [8]

As mentioned in Sect. 4, our proposed algorithm consists of different steps; for each, based
on its cost calculated above, the desirability of the correspondent fragmentation scheme is
calculated.

5 General concepts of ant clustering algorithms

As the name suggests, an algorithm, which is based on ants’ behavior, try to simulate the ant
conduct in nature. Despite the seeming simplicity of ants’ actions as well as their consequent
implementation, these models are actually complex organized systems and are especially
suitable for optimization problems and problems with distributed nature. Algorithms based
on ant behavior have a wide range of applications. Namely, they are used for solving various
problems such as data mining [30], assignment [40,45,46], scheduling [47], data allocation
[1] and document clustering [20,22,38].

There are some advantages to algorithms based on ant behavior. Firstly, the distributed
nature of these algorithms results in scalability that is one of the most important issues in
clustering problems [40]. Secondly, as for large-scale problems, these algorithms run faster
than other algorithms [21]. Moreover, due to their stochastic nature, these algorithms can
explore space problem more thoroughly than greedy algorithms in which only local search
is used. Thus, algorithms based on ant behavior are capable of finding close to optimal
solutions [11].

A group of algorithms based on ant behavior, which use ant clustering meta-heuristic, is
referred to ant clustering algorithm. They are all derived from “basic” ant clustering algo-
rithm presented by Deneuborg et al. [14], where by using a simple local interaction with no
centralized control or global representation of the environment, they proposed a basic model
to interpret ants’ behavior [4].

6 Data clustering problem

Data clustering is a technique of unsupervised learning, commonly used for statistical data
analysis in many fields, such as document clustering [25,35], data mining [28,39], plan
recognition [48] etc. Ant clustering algorithms have been successfully applied to the data
clustering problem [21], which is known to be an NP-Hard problem [18]. Formally, data
clustering is defined as follows [8]:

Data clustering problem for n attributes in a d-dimensional metric space is that of par-
titioning attributes into m groups, or clusters, such that the attributes in a cluster are more
similar to each other than to attributes in other clusters.

By introducing a measure of dissimilarity between data objects, Lumer and Faieta [29]
succeeded to extend a basic model of ant clustering algorithm for data clustering problem
for the first time. We refer to their algorithm as Lumer and Faieta ant clustering (LFAC)
algorithm. The pseudo code of this algorithm is presented here [29]:
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Algorithm LFAC

The probability of picking or dropping an object is computed as follows [29]:

Ppickupi
=

(
K p

K p + f (i)

)2

Pdropi
=

(
f (i)

Kd + f (i)

)2

Where f (i) is a measure of similarity between an object and other objects in the neigh-
borhood, which increases once their disparity (or distance in feature space) decreases; K p

and Kd are, respectively, pickup and dropping threshold parameters.
Considering clusters as regions of attribute pattern space in which dense patterns are sep-

arated by regions of lower attribute density, we can adopt the LFAC algorithm for vertical
fragmentation problem [8]. As we can see in LFAC algorithm, the goal is to find clusters
that not only minimize the intra-cluster variation, but they also maximize the inter-cluster
variation. However, besides clustering goal in vertical fragmentation, during the transaction
processing, we need to find optimal number of clusters that minimize the access cost of
transactions of attributes. In other words, the significance of number of clusters as an impor-
tant factor which affects the trade-off between local and remote transaction processing costs
is realized [8]. Therefore, the best fragmentation that is to achieve the first goal does not
necessarily attain the second. Hence, in some cases, we must slightly sacrifice the similarity
between attributes and merge some of the fragments in order to achieve optimum number of
fragments and thus, reduce the access cost of transaction processing.

As a result, in addition to the similarity between attributes, there is an extra concept in
vertical fragmentation problem that must be considered in order to extend the Lumer and
Faieta’s model for the data fragmentation problem. We add the cost model presented in
Sect. 4.2 so as to meet the second goal of vertical fragmentation.

7 Proposed algorithms

We proposed a new algorithm based on ant behavior for vertical fragmentation problem
called hybrid ant clustering algorithm (HACA). In our proposed algorithm, according to
ant clustering meta-heuristic, each ant compares a candidate attribute with its 8 surrounding
cells—also referred to as the neighborhood space—, to decide whether it should be picked
up or dropped. In order to find similar attributes to assign to a cluster, a measure of average
similarity between candidate attribute and the other attributes in its neighborhood is used.
To facilitate the increase both in the quality of responds and the algorithm’s speed, an eight-
bit short memory is considered for each ant, so that each ant can remember the last eight
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attributes that it has dropped. Hence, instead of moving through the grid and searching for
the best location, each ant, after picking up an attribute, compares the selected attribute with
the last eight attributes that it has dropped to find the most similar one. The ant memory is
then updated after its carried attribute is dropped.

Here, we add two new concepts to LFAC algorithm in order to solve the vertical fragmen-
tation problem. Firstly, we consider a 2-bit memory called current fragment number (CFN)
and Optimum Fragment Number (OFN) for each attribute, where the former shows the index
number of the fragment in which the attribute is located in the current iteration, and the
latter shows the index number of the optimal fragment from the start. Secondly, we add PE
function to evaluate the generated solution in each iteration, and if any, we replace it with
the better one. Besides this, in order to prevent spending large amounts of time searching for
new attributes to be picked up, each ant is loaded with a new attribute immediately after it
drops its load. In other words, after dropping an attribute, the ant randomly chooses another
attribute from the index of all attributes that are not being carried. It then moves to the right
position and tries to pick it up. In case of failure, another attribute is chosen randomly.

The generic HACA algorithm for vertical fragmentation problem is described below:

Algorithm HACA
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8 Description of our proposed algorithm

8.1 Initialization

In the initialization step, a primary solution is generated as follows. First, all the attributes
are put into a list called UnseenAttributes. Then, in each iteration, as long as there is
an attribute in the UnseenAttributes, each ant, if unloaded, is loaded by a randomly
selected attribute from the list without considering the probability of picking up that attribute.
The attribute is then removed from the list. If the ant is loaded, it tries to unload its attribute
in the same cluster as that of the most similar attribute (MSA) to Ai in its short-term memory.
In the latter case, Ai is located in MSA’s cluster with probability Pdrop, and the amount of
CFN for Ai is changed to MSA’s CFN. Otherwise, Ai is dropped in a random-free location
in the grid, and its CFN is set to a new fragment number.

8.2 Fragmentation

The main difference between the initialization and the fragmentation step is that in the former,
we ignore the probability of picking up an attribute as that is defined only after the attributes
are located on the grid. In this step, a solution is constructed as follows:

In each iteration, each ant j , if unloaded, tries to pickup an attribute Ai among all attributes
that are not being carried; if loaded, the dropping operation is carried out as in the initiali-
zation step. Similar to the canonical algorithm, the probability of picking up and dropping
the attributes is based on the measure of average similarity of Ai with the other attributes in
its neighborhood. However, we modified the similarity measure function presented in LFAC
algorithm [29] by considering some of concepts related to the data fragmentation problem.
In the following, the modified similarity measure function is described.

8.2.1 Similarity measure function

The similarity measure function computes the degree of similarity of the attributes being
compared, based on their neighboring being accessed by transactions. The modified mea-
sure of similarity between the candidate attribute and its neighbors’, during picking up or
dropping, is calculated as follows:

f (i) = max

⎛
⎝0,

1

s2

∑

{ci j ∈s|ci j �=Null}

(
1 − Di,Ci j

∝ μ

)⎞
⎠

Where f (i) is the similarity measure, s is the neighborhood space for candidate attribute
i, Di, Cij is the degree of dissimilarity between attribute i and its neighbors, and α is the
tune-up accuracy parameter which is used in adaptive tuning of the scale of similarity among
attributes.

Value of α varies between (0, 1) such that it is initially set to 0.1, and after a number
of iterations, if the number of attributes being dropped is less than the drop threshold, α is
increased by 0.01 [20]. As a results, at first, the attributes that have a high degree of similarity
are clustered together, and if there are no such attributes, α parameter is increased gradually in
order to find a scale of similarity between attributes. The parameter µ, which equals average
distance between all attributes, is calculated as below [20]:
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µ = 2

NA (NA − 1)

NA∑

i=1

i−1∑

j=1

d (i. j)

8.3 Evaluation

At the end of each iteration, the resulting fragmentation is evaluated by PE function. If the new
fragmentation is better than the previous optimal fragmentation, value of CFN is replaced by
OFN, and the new fragmentation is considered as an optimal one.

8.4 Termination

In order to determine the required number of iterations, we consider a termination threshold
parameter (TT) so that if after TT consequent number of iterations no better solution than that
of the OFN is obtained, then the algorithm terminates. Termination threshold is calculated
as follows:

TT = α × NAtt(
ppickup × Nant

)

Determining α is case dependent, and it increases with the size of the problem. The best
value for α in our case is in range [1,2].

9 An alternative algorithm to be compared with proposed algorithms

To compare the accuracy and the quality of obtained results in our proposed algorithm, we
compared our algorithm with GRGS-GA whose scalability and accuracy of result are greater
than other existing algorithms [15].

9.1 GRGS-GA

The following shows the pseudo code the GRGS-GA algorithm:

Algorithm GRGS-GA

This algorithm uses grouping-based method in genetic algorithms. The structure of each
chromosome is defined as below:

1 2 … i i+1 . . . n-1 n
F1 F2 . . . Fi Fi+1 . . . Fn_1 Fn
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Each cell presents an attribute while their contents (Fi ) show the fragment number each
attribute belongs to. In order to prevent encoding redundancy in this algorithm, they used a
restricted growth (RG) string constraint in constructing chromosomes and performing group-
oriented genetic algorithm (GA) operations, in such a way that:

Fi+1 ≤ (max(F1, F2, . . . Fi ) + 1), 0 < i < n, F1 = 1

In this algorithm, first, a population of chromosomes is created by a constructor function.
The constructor function makes use of a function named rectifier to apply RG string con-
straint, which has been referred above. In [15], the rectifier is explained in detail. At the end
of iteration, an evaluation function is run on the new population to determine the fitness of the
chromosomes. The evaluation function used in this algorithm is the one which is presented
in [8]. To create the next generation, chromosomes are selected based on their fitness and the
cross-over and the mutation operations are carried out on them. The details of this algorithm
are presented in [15]. The operations are repeated until the number of generations reaches a
maximum limit. The best solution is printed out at the end of the algorithm.

10 Evaluation of algorithms

In this section, we present the results of our proposed algorithms’ evaluation. The two types
of the evaluations carried out are as follows:

1. Theoretical evaluation
2. Experimental evaluation

10.1 Theoretical evaluation

For this evaluation, we compare computational complexity of our proposed algorithm with
that of GRGS-GA. Therefore, we first calculate the computational complexity of each of them.

10.1.1 Computational complexity of HACA

Following our previous explanations of HACA, in order to evaluate this algorithm, first, we
randomly locate attributes of each ant in a grid and then, evaluate the process of picking up
an attribute. In this process, first, each ant calculates Ppickup for any candidate attribute, and
then a random number between (0, 1) is selected. If Ppickup is less than or equal to the random
number, the attribute is picked up by the ant; otherwise, the above processes will be followed
for the n −1 remaining attributes. If the condition is not satisfactory, these operations will be
continued until all the attributes will have been investigated. Due to the stochastic nature of
the pickup process, the complexity of each ant’s pickup operation is calculated as its expec-
tation (E(pickup)). The probability of Ppickup for attribute i being less than or equal to the
random number is presented by PAtti . As these probabilities are independent from each other,
E(pickup) is obtained as follows:

E (pickup) = 8 ×
⎛
⎝

NATT∑

i=1

1

NATT
× PAtt1 + (

1 − PAtt1

) NATT−1∑

i=1

1

NATT − 1
× PAtt2 × 2 + . . .

+ (
1−PAtt1

) (
1−PAtt2

) · · · (1 − PAttn−1

) NATT−(NATT−1)∑

i=1

1

NATT−(NATT − 1)
× PAttn × n

⎞
⎠

123



448 M. Goli, S. M. T. Rouhani Rankoohi

However, selection of an attribute by each ant depends on some other factors such as the
location of each attribute, the pattern of the located attributes in the grid, the priority of
transaction accesses to the attributes, the degree of similarity between the candidate attribute
and its neighbors, and so on. Hence, we cannot have enough information for Ppickup precise
calculation. Thus, it is assumed that Ppickup has a random value of X , and value of the ran-
domly selected number is Y . The probability of a random variable being less than a random
value is as follows:

PAtti = {P (Y ≤ X) | X, Y ∈ [0, 1]} = 1/2

Therefore,

E (pickup) = 8 ×
(

1

2
+ 2

4
+ 3

8
+ 4

16
+ · · · + n

2n

)

Thus, when n → ∞, E ({pickup}) = 16.
Since each attribute vector has dimension NT , in order to compute the degree of dissimi-

larity between each two attributes, NT operations are carried out. Hence, number of required
operations to pick up an attribute is equal to the following:

NO Ppickup = 16 × NT

Secondly, in dropping process, f (i) is computed for each of the eight attributes in the ant’s
memory. After finding the most similar attribute, in order to compute the Pdrop, f (i) is com-
puted for the eight neighboring-free spots near the most similar attribute(MSA), and then,
a random number between (0, 1) is selected. If Pdrop is less than or equal to the random
number, the carried attribute (Ai ) is dropped in the same cluster as that of MSA, otherwise
Ai is dropped in a random-free location in the grid. Hence, the number of operations is equal
to the following:

NO Pdrop = 64 × NT

Following each iteration, a comparison between the current solution and the best solution
is made by PE so as to select the best one. As presented in PE formula, the computational
complexity of PE is equal to the following:

NO PP E = (NF × NT × NAtt) + (
N 2

F × NT × NAtt
)

Thus, the total number of operations in HACA algorithm are computed as follows:

NO PTotal = NI (NANT ((16 × NT ) + (64 × NT )) + (NF × NT × NAtt)

+ (
N 2

F × NT × NAtt
))

Hence, the computational complexity of HACA is equal to the following:

O
(
max

(
(NI × NAnt × NT ), (NI × N 2

F × NT × NAtt)
))

10.1.2 Computational complexity of GRGS-GA

In [15], the computational complexity of GSGR-GA has not been computed, therefore, in
order to compare it with the computational complexity of our proposed algorithms; we com-
pute its computational complexity first.

As mentioned before, in this algorithm, first, a population of chromosomes is generated
by a constructor function, named as rectifier, which acts as follows.
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For each fragment number x that is greater than the previous numbers in a chromosome,
it finds the smallest possible number between the last investigated number and x ; then, the
number replaces each gene that equals x . Thus, in the worst case, the number of operations
is equal to the following:

NREC =
NATT∑

i=1

NAtt∑

j=i
1 =

(
N2

Att + NAtt
)

2

where NREC is the number of instruction carried out for imposing RG string constraint.
Next, by using a PE, the accuracy of generated fragments in the population is evalu-

ated; based on which, they are sorted in the population. Hence, the number of the required
instructions is equal to the following:

NP = Npop × (
NATT + NREC + (

N 2
F × NT × NAtt

)) + NPOP log NPOP

Next, in each iteration, with the help of tournament selection (NPOP − NElitism/2), some pairs
of chromosomes are selected so as to generate NPOP − NElitism children, i.e. two children for
each pair. Here, NPOP refers to the number of existing chromosomes in the population, and
NElitism is the number of chromosomes with maximum fitness in the population. Then, the
cross-over operations are carried out on each selected pair of chromosomes with probability
Pc. Based on the length of each chromosome, the number of operations in this section is
2× NATT. In order to impose the RG string constraint on each child, the rectifier that is being
run requires 2 × NREC units of instruction to impose restriction on two children. In some
cases, having occurred with rate Pm , instead of cross-over operations, the mutation operation
is run on one of the parents to create a child, and then the rectifier imposes the restriction. In
this case, number of operations is equal to 3 + NREC. At the end, in the survival selection,
through best fitting selection, the children are substituted by a new population where chro-
mosomes are sorted based on their fitness. Hence, required units of instruction is equal to the
following:

Nop = NG × (NPOP − NElitism) ((2 × 2) + PC × (2 × (NATT + NREC))

+ Pm × (3 + NREC) + (NPOP − NElitism) + (
NPOP × (

N 2
F × NT × NAtt

))

+ NPOP log NPOP)

Therefore, the total number of operations in this algorithm is equal to the following:

N = Np + Nop

As in [15], their proposed parameter values are NElitism = 20, Pc = 0.8, and Pm = 0.01;
the computational complexity of their algorithm is given by the following:

O
(

max
((

NG × NPOP × N 2
ATT

)
,
(

NG × N 2
Pop × N 2

F × NT × NAtt

)))

10.1.3 Comparing computational complexity of HACA and GRGS-GA

As stated in [5,33,36], an “optimal” solution is possibly closer to a full relation than to a set
of fragments, each of which consists of a single attribute. Therefore, in an optimal solution,
a relation is likely to be partitioned into a few fragments; thus, NF can be overlooked against
the other variables. As mentioned in [9], applying 80/20 rule, we can reduce the number of
important transaction in a system to be disregarded in comparison with the number of attri-
butes. Although the concepts of population and ants are not the same, the growth rate of their
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respective parameters is roughly the same. Thus, they are comparable with each other. The
remaining parameters are the number of iterations/generations and the number of attributes,
which affect the size and complexity of the problem space. Furthermore, the concept of NI

and NG is also the same, and they too can be compared with each other. However, as the
experimental results confirm, NAnt and NI are less than NPOP and NG , respectively. Moreover,
the complexity in HACA grows linearly with respect to NAtt, while in GRGS-GA, it grows
non-linearly. Thus, the effect of increasing the number of attributes on computational cost
and the scalability of algorithm in GRGS-GA are much more than that of in HACA. Based
on what went on, we can see that the complexity of HACA is less than that of GRGS-GA,
and hence, it is more scalable than GRGS-GA.

10.2 Experimental evaluation

Since GRGS-GA generates more optimal solutions and is more scalable than other exist-
ing fragmentation algorithm [15], it is experimentally compared with our algorithm. In our
experiment, the goal is to investigate the effect of the scale of problem on the accuracy of
obtained results.

10.2.1 Test data generation

Problem generator In order to test the algorithm, a PG function is used to create problem
instances. First, upon receiving the number of transactions and the number of attributes, the
PG function randomly generates each of the components of the attribute usage matrix. Then,
it creates the transaction frequency by selecting a number between [1,999] for each transac-
tion. Next, based on the information generated so far, it constructs a problem instance and
determines the actual optimum solution for each case. Thus, complex pattern of accesses of
transactions to attributes is generated.

10.2.2 Experimental results

In this experiment, the accuracy of the obtained results by GRGS-GA and HACA is com-
pared in terms of the average cost of transaction processing. The experiment is carried out
on five data fragmentation configurations, which are generally divided into two classes of
configurations:

Class 1: This class contains two of the problem instances which are used in [3,7,23,28].
The first one contains 10 attributes and 8 important transactions, while the other contains 20
attributes plus 15 important transactions. Both algorithms in this class are run 100 times for
each problem instance.

Class 2: This class contains three problem instances which are generated by SG. The
first one contains 100 attributes plus 40 important transactions, the second has 500 attributes
and 60 important transactions, and yet, the last one contains 800 attributes and 80 important
transactions. Both algorithms in this class are run 15 times for each problem instance.

Details of each problem instance are shown in Table 2.
In each problem instant mentioned above, number of ants, number of iterations and size

of grid have different values, but the other input parameters are constant in all of the problem
instances. The values of these parameters are shown in Table 3.

The average results obtained for each problem instance through each algorithm are shown
in Table 4.
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Table 2 Problem instances
details Problem instance Optimum cost ×104 Optimum no.

of fragment

10Att-8Tran 0.5820 3

20Att-15Tran 0.4627 4

100Att-40Tran 53.2641 15

500Att-60Tran 127.6348 25

800Att-80Tran 296.4351 35

Table 3 Selected values for the parameters

Description Parameters Values

Constant value of pick up process in HACA algorithm K p 0.1

Constant value of dropping process used in HACA algorithm Kd 0.1

Considered neighborhood space for each attribute in HACA algorithm S 5

Number of memory cells for each ant used in HACA algorithm NoAnt Mem 8

Number of selected chromosomes using Best Fit Selection in GRGA-GS NElitism 20

Probability of performing cross-over operations in GRGS-GA PC 0.8

Probability of performing mutation operations in GRGS-GA Pm 0.01

Table 4 Evaluation of results achieved by algorithms

Algorithm Experiment results 10Att-8Tran 20Att-15Tran 100Att-40Tran 500Att-60Tran 800Att-80Tran
name

HACA Number of iterations 23.7 32.8 469.7 2950.2 6441.9

Number of ants 3 5 20 60 95

TT 10 10 20 30 50

Average number of 3.03 4.06 15.26 26.33 37.46
fragments

Average cost ×104 0.5826 0.4654 54.8176 131.5080 320.8516

No. of times hitting actual 97 94 13 10 8
optimum

GRGS-GA Number of generations 25.1 36.9 604.7 3491.3 8012.5

Size of population 100 150 200 250 300

TT* 10 10 50 100 150

Average number of 3.05 4.09 15.40 27.60 38.73
fragments

Average cost*104 0.5830 0.4667 55.5943 139.8508 333.7661

No. of times actual 95 91 12 7 4
optimum is hit

* The TT values for GRGS-GA have been given based on [15]

In Table 4, the average cost of access to attributes, the optimal value for average number
of fragments, the maximum number of times actual optimum is hit, and the optimal number
of iterations/generations for each problem instance are shown in bold.
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Fig. 1 deviation from optimum solution

As shown in the experimental results, the number of iterations in HACA is less than the
one in GRGS-GA. This means that HACA converges to the optimum solution faster than
GRGS-GA. Moreover, among 245 runs for each of the algorithms for the above problem
instances, HACA hits the optimum solution 222 times, while GRGS-GA hits it 209 times.
In other words in 90.6% of times, HACA is successful to find the optimum solution, and
in 9.4%, it finds a suboptimum solution while these numbers for GRGS-GA are 85.4 and
14.6%, respectively. Also, based on the average cost of obtaining solutions, the deviation
from optimum solution (DO ) in each problem instance is calculated as follows:

DO = (AverageCost − OptimumCost)

OptimumCost

Figure 1 shows the deviations from optimum solutions for both algorithms.
As shown in Fig. 1, in each problem instance, the quality of the solution in HACA is higher

than that of GRGS-GA. On the other hand, for small-scale problems, the differences between
the solutions obtained by HACA and GRGS-GA are low. However, as the size of problem
increases, difference between the accuracy of solutions obtained by HACA and GRGS-GA
is remarkable.

11 Conclusion

In this paper, we address the prominent issue of vertical fragmentation problem in distributed
database systems. We propose a new vertical fragmentation algorithm based on the heuristic
method resulted from the integration of ant clustering algorithm and an optimizing number
of fragments function.

In our theoretical and experimental evaluation studies, we have assessed the computational
complexity as well as the accuracy of the obtained results from our proposed algorithm and
compared them with those of GRGS-GA algorithm. These evaluations have revealed that
our proposed algorithm possesses a superior complexity in comparison with GRGS-GA,
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which in terms of both computational cost and further scalability make it a less expensive
algorithm than GRGS-GA. In addition, it affords to generate a much more accurate solution
for particularly large-scale problems than GSGRGA.

Future studies could examine other criteria such as considering replication in vertical frag-
mentation problem. Moreover, other heuristic methods like support vector machine (SVM),
particle swarm optimization (PSO), and self-organizing map (SOM), which have proved suc-
cessful in clustering problems, could be used to handle vertical fragmentation problem.
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