
Knowl Inf Syst (2009) 20:349–373
DOI 10.1007/s10115-008-0182-y

REGULAR PAPER

A new ant colony optimization based algorithm for data
allocation problem in distributed databases

Rosa Karimi Adl ·
Seyed Mohammad Taghi Rouhani Rankoohi

Received: 27 November 2007 / Revised: 29 July 2008 / Accepted: 27 September 2008 /
Published online: 23 January 2009
© Springer-Verlag London Limited 2009

Abstract The Performance and the efficiency of a distributed database system depend
highly on the way data are allocated to the sites. The NP-completeness of the data allocation
problem and the large size of its real occurrence, call for employing a fast and scalable heu-
ristic algorithm. In this paper, we address the data allocation problem in terms of minimizing
two different types of data transmission across the network, i.e., data transmissions due to
site-fragment dependencies and those caused by inter-fragment dependencies. We propose a
new heuristic algorithm which is based on the ant colony optimization meta-heuristic, with
regards to the applied strategies for query optimization and integrity enforcement. The goal is
to design an efficient data allocation scheme to minimize the total transaction response time
under memory capacity constraints of the sites. Experimental tests indicate that our algorithm
is capable of producing near- optimal solutions within a reasonable time. The results also
reveal the flexibility and scalability of the proposed algorithm.

Keywords Distributed database system · Non-replicated data allocation · Site-fragment
dependency · Inter-fragment dependency · Ant colony optimization

1 Introduction

Distributed database applications have been the subject of increasing attention over the last
few decades. Distributed database systems are not only more compatible with the decen-
tralized nature of organizations and their growing volume of required data, but they also
help reduce costs (communication and equipment), increase efficiency by providing a higher
degree of parallelism, and improve reliability as well as accessibility [6]. Consequently,
in addition to utilization of a multitude of computer systems, the necessity of increasing

R. Karimi Adl (B) · S. M. T. Rouhani Rankoohi
Electrical and Computer Engineering Department, Shahid Beheshti University, Tehran, Iran
e-mail: Rosa_adl@std.sbu.ac.ir; rositta_bonita@yahoo.com

S. M. T. Rouhani Rankoohi
e-mail: Rohani@sbu.ac.ir

123



350 R. Karimi Adl, S. M. T. Rouhani Rankoohi

parallelism and reliability have added to the complexities of data maintenance and manage-
ment in a distributed database system. One of the fundamental and yet complicated problems
in this area is the database design,1 where in addition to the classic design stage for the
global schema (using the same old techniques as in centralized databases) two new stages of
fragmentation and allocation design should also be considered.

In order to come up with the appropriate allocation units at the distribution design stage,
global relations are either decomposed into horizontal and vertical fragments, or a combina-
tion of both. The placement of these fragments in sites as well as their possible replication
will be decided subsequently at the allocation stage. Although fragmentation and allocation
are two interconnected tasks, they are usually performed separately to make it possible to
“deal with the complexity of the problem” [26]. Without considering their allocation, one
group of algorithms provides relatively suitable units of allocation by fragmenting the base
relations. The other group of algorithms takes these fragments as inputs and work out the
proper placement for each (allocation scheme).

Furthermore, not only the environmental limitations are considered by good allocation
scheme (e.g., memory capacity, processing power of each site, capacity of communication
channels, etc.), but it also places the fragments in sites in order to minimize the total response
time of all transactions. In order to achieve this goal, the fragments are required to be allo-
cated in such a way that firstly the volume of transferred data between sites would be low,
secondly logically related fragments would be located in nearby sites, and finally the vol-
ume of maintained data in every site would be less than its memory capacity (environmental
limitations permitted) [3]. In addition to these rules, other determining conditions such as
the amount of provided parallelism should also be considered. Moreover, in order to choose
an appropriate query optimization strategy some other environmental factors including the
different processing power and disk drives’ speed of each site, workload on servers and the
network traffic [30] should be taken into account. Therefore, the data allocation problem
can be categorized within resource allocation problems which are defined as “optimization
problems with constraints” [18]. It is also possible to show that even without considering
many other criteria, the allocation problem, is NP-hard and requires heuristic methods to
be solved [3]. Therefore, in order to achieve a relatively suitable solution to the allocation
problem within an acceptable computation time, the majority of the proposed algorithms (see
Sect. 2), including the algorithm presented in this article, are only concerned with the net-
work data transfer delay. This delay is the most significant contributing factor to transaction
response time among the other factors which include the processing time of a local request,
the delay of data transfer between local storage hierarchy, etc.

In practice, there are two main causes for data transmission between sites:

1. Execution of a transaction in a site which lacks the required data for the transaction.
2. Execution of transactions in one site which depending on the fragments it contains

necessitates some data items to be transferred between at least two other sites. These
transactions define some logical and semantic relationship between fragments.

There are some similarities between the data allocation problem (DAP), the file allocation
problem (FAP), and the quadratic assignment problem (QAP): simply by considering only
the first cause of data transmissions, the problem becomes similar to the well known FAP.
However, the FAP differs from the DAP in many ways, the most important of which is the
logical and semantic relationship among fragments (the second cause of data transmission)
[6,25]. The logical and semantic relationships among fragments require the related fragments

1 By the term ‘distributed database’ we mean relational distributed database.

123



A new ant colony optimization based algorithm 351

to be located at nearby. This point has lead us to find similarities between the DAP and the
QAP.

The QAP is a well-known combinatorial optimization problem first formulated by
Koopmans and Beckman [16]. The problem can be defined as follows: Consider a set of
n facilities and a set of n locations. The distance between each pair of locations is predefined.
For each pair of facilities there is a specified flow in terms of the amount of supplies needed
to be transported between the two facilities. The problem is to assign the facilities to different
locations in order to minimize the sum of flows between each two facilities multiplied by the
distance between their corresponding locations.

The dependence of fragments on each other can be expressed as a QAP, in which every
fragment is equivalent to a facility and every site is equivalent to a location. The flow between
two facilities represents the amount of data transmitted between two sites which contain the
two corresponding fragments and the distance between two locations is considered as the
cost of sending a data item (for example a block of data or a frame of data) between two
sites. However, in most cases DAP is more complicated than QAP, because of the fact that in
QAP the number of facilities and locations are equal, whereas in DAP there are usually more
fragments than sites. Besides, unlike QAP, there are certain relationships between sites and
fragments (the first reason of data transmission) in DAP, which should also be considered.

In this paper there is a solution for the allocation problem presented for the first time by
combining some new heuristics with a number of ant colony optimization (ACO) algorithms
proposed for the QAP.

The rest of this paper is organized as follows: in Sect. 2, some proposed algorithms for
DAP are studied briefly. In Sect. 3, we defined some of the new concepts that are widely
used in the rest of the paper. Section 4 refers to the detailed explanation of the DAP and the
cost evaluation of an allocation scheme. Next, in Sect. 5, an introduction to ACO algorithms
is provided. In Sect. 6, the QAP (which is very similar to the DAP) is defined briefly and
the applied ACO algorithms are discussed. Sections 7 and 8 are devoted to our proposed
ACO-DAP algorithm for DAP, which is explained in detail. In Sect. 9, an alternate algorithm
known as simulated evolutionary (SE) algorithm is introduced with some modifications so
that the proposed ACO-DAP algorithm could be compared with the revised version. Sec-
tion 10 explains the experiment environment and describes the way test data are generated.
The achieved results are further studied in Sect. 11. Finally, Sect. 12 provides a summary
and conclusions.

2 Related work

As mentioned in advance, the DAP in distributed databases (DAP) is a more complicated
case of the FAP. The FAP has been extensively studied in the previous literature [3,7,10,17].
The proposed algorithms gradually considered some of the requirements of the DAP which
do not exist in the FAP. For example, various authors have considered the DAP as a form
of the replica placement problem with different types of underlying networks such as con-
tent delivery networks and networks with read-one-write-all policy [5,8]. Mei et al. in [21]
put emphasis on security considerations in their proposed data allocation process. Ram and
Marsten [27] examined the problem from the concurrency mechanism point of view.

Existing algorithms for the DAP could define an allocation scheme either statically or
dynamically. In a static data allocation algorithm, the data allocation scheme is designed
based on the predefined execution pattern of transactions in the target environment. In con-
trast, dynamic data allocation algorithms [4,14,34] react to the changes in the execution

123



352 R. Karimi Adl, S. M. T. Rouhani Rankoohi

pattern of transactions. We will go through those static algorithms with goals similar to those
of our suggested algorithm.

In 1982, Navathe et al. [24] proposed a data distribution algorithm in which data frag-
mentation and data allocation were determined simultaneously. However, most of the data
allocation algorithms were assumed to have predefined data fragments and tried to allocate
these fragments to proper sites (with or without replication). Ceri and Plagatti [6] proposed a
greedy algorithm for both replicated and non-replicated data allocation design problem, how-
ever since the proposed algorithm was not successful in considering the logical and semantic
relationship between fragments, the achieved results were not satisfactory.

In 1984, Bell [2] showed that the DAP is NP-Hard. Later, Freider and Sieglemann [13]
proved the NP-Completeness of multi processor document allocation problem (MDAP) by
reducing it to a well known NP-Hard problem: the QAP.

Consequently, most of the algorithms introduced afterward, tried to use heuristic meth-
ods to solve DAP. Although Sarathy et al. [29] and Menon [21] tried to present opti-
mal approaches (based on mathematical programming) to the DAP, their algorithms suf-
fered either from the high order time complexity or the complexity of the formulation
itself.

In 1994, Corcoran and Hale [9] proposed a solution for DAP based on genetic algo-
rithms (GA), in which the logical and semantic relation between fragments were not taken
into account. Later, Frieder and Siegelmann [13] applied a different GA to the DAP which
did consider the logical and semantic relationship between fragments, though in its sim-
plest form using binary logic (i.e., the degree of dependencies were not mentioned) and
without taking into account the important concept of dependencies between sites and frag-
ments.

In 2002, Ahmad et al. [1] proposed another GA, a SE algorithm and an algorithm based
on Mean Field Annealing [26] and showed that the SE algorithm provides better solutions in
a relatively short time. Although the SE algorithm considers the logical and semantic relation
between fragments, it apparently assumes all fragments to have the same size, which is often
not the case in real-world DAPs.

In short, most of the existing static data allocation algorithms proposed will fall into one
of these categories: greedy algorithms (e.g., [6,24]), optimal approaches (e.g., [21,29]), evo-
lutionary and GAs (e.g., [1,9,13]), and mean field annealing (e.g., [1]). Some of the other
algorithms cannot be placed in any particular category. In this paper, a static algorithm based
on the ACO metaheuristic is presented for the first time for the DAP and hence a new category
of ACO algorithms is introduced. Our proposed algorithm is further compared with the SE
algorithm [1], which was previously compared in [1] with the genetic, mean field annealing
as well as greedy algorithms and has been reported to find better solutions in a shorter period
of time.

3 Preliminaries

Before going deep into our proposed solution for the DAP, it is necessary to define some of
the concepts used in this work:

Definition 1 direct transaction-fragment dependency The dependency between transaction
tk and fragment f j is said to be direct, if for each execution of the transaction tk there
should be some data transmitted from site containing the fragment f j to the site executing
the transaction.

123



A new ant colony optimization based algorithm 353

Example 1.1 When transaction tk is executed in site si , and requests a select operation on
two fragments f j1 and f j2 saved in sites si1 and si2 , respectively, it is necessary for some
data items to be transmitted from si1 and si2 to the site si .

Definition 2 indirect transaction-fragment dependency The dependency between transac-
tion tk and fragment f j is said to be indirect, if for each execution of the transaction tk there
should be some data transmitted from the site containing the fragment f j to the site storing
one of the other fragments (not the originating site of the transaction).

This type of dependency is usually defined according to the strategies used for query
optimization, integrity constraint checking, security support, etc. The query optimization
problem itself has been the subject of several researches. With the ever growing complex-
ity of queries in database systems, the proposed query optimization methods have become
more essential and intricate. One good illustration is suggested in [35], which is based on
identifying and analyzing similar subqueries.

Example 2.1 Assuming transaction tk is executed in site si , and requests a join operation on
fragments f j1 and f j2; a query optimization strategy is to send joinable data from the site
containing smaller fragment (e.g., f j1) to the site containing the larger one (e.g., f j2) and
then send the result to the site si . Thus, for each execution of transaction tk (in any site), it is
necessary to send some data items from the site containing f j1 to the site having f j2 .

Example 2.2 When transaction tk inserts some tuples into fragment f j , a vertical fragment
of a global relation R, consistency issues urge the primary key or the tuple identifier (TID)
of the inserted tuples to be sent to the other site containing the vertical fragments of R.

Example 2.3 When transaction tk requests an update operation on attribute values involved
in a calculated attribute (existing in another fragment) the updated data should be transmitted
from the site containing the updated data to the site containing the calculated attribute.

Definition 3 site-fragment dependency The site si is said to be dependent on fragment f j ,

if it executes at least one transaction which directly depends on the fragment f j . The more
frequently the transactionis executed at the site or the more data is required by it, the more
dependent the site would be on the fragment.

Example 3.1 Suppose the scenario defined in Example 1, the execution of transaction tk in
site si , causes the site si dependent on fragments f j1 and f j2 .

Definition 4 Inter-fragment dependency The fragment f j1 is said to be dependent on
the fragment f j2 , if there exists at least one transaction such as tk which indirectly depends
on fragment f j1 and its execution necessitates data transmission from the site containing this
fragment to the one containing fragment f j2 .2

Example 4.1 Suppose the scenarios defined in Examples 2.1 and 2.2 for every execution of
transaction tk (in every site), it is necessary for some data items to be transmitted from the
site containing f j1 to the site storing f j2 . In this way the fragment f j1 is said to be dependent
on the fragment f j2 .

It can be seen easily that one of the factors making fragments dependent on each other
is the enforcement of integrity constraints [15]. However, as far as we know, this matter has
not been studied in the previous literature.

2 The original idea of the dependencies between fragments was introduced in [1]. In that reference however,
binary operations (such as join, union, etc.) were introduced as the only reason for this type of dependency,
whereas we believe that other operations, specially the enforcement of integrity constraints, can also cause
this kind of dependency.

123



354 R. Karimi Adl, S. M. T. Rouhani Rankoohi

4 Problem definition

4.1 Data allocation in distributed database systems

A distributed database consists of more than one site, each maintaining a portion of the
global database. Different transactions with different execution frequencies are submitted
to different sites, which may cause data transfer between the sites in the network (due to
site-fragment and/or inter-fragment dependencies). The problem is to minimize the response
time of each transaction considering the storage capacity constraint of each site. Since most
of the delays in a distributed database system are related to the required time (cost) for data
transmission, we have only considered this cost in determining the overall response times of
transactions.

4.2 Pertinent parameters

Table 1 summarizes the key notations used in this paper.

Parameters associated with the sites:

Suppose the distributed database system is composed of n sites. The i th site (1 ≤ i ≤ n) is
denoted as si and its storage capacity (expressed in bytes) as SiteCapi . The sites are con-
nected to each other in a network with predefined topology. The distance between each two
sites is estimated according to this topology and the average cost of sending a unit data item
from one site to another can be calculated. After defining the cost of unit data transmission
between each two sites, a UCn×n matrix can be defined in which uci1i2 shows the cost of
sending a unit data item from site si1 to the site si2 .

Parameters associated with the fragments:

If the global relations are decomposed into m fragments the j th fragment (1 ≤ j ≤ m) is
denoted as f j and its size (in average3) as fragSize j .

Parameters associated with the transactions:

The determining factor in placement of fragments in sites, are the access and the execution
patterns of transactions. Since the number of transactions in a typical environment may be
large, only 20% of the most active transactions (that do 80% of data accesses in the system)
may be taken into account [25]. If the number of such transactions in the environment is l
the kth transaction (1 ≤ k ≤ l) is denoted as tk . The frequencies of transaction executions in
sites are shown with matrix FREQn×l in which freqik (1 ≤ i ≤ n, 1 ≤ k ≤ l) is the execution
frequency of transaction tk at site si .

Parameters associated with the transaction dependencies on the fragments:

The direct transaction-fragment dependency (explained in Sect. 3) is shown with matrix
TRFRl×m, in which trfrk j indicates the volume of data items of fragment f j that must be
sent from site containing f j to the site executing transaction tk, for each execution of tk .

3 The size of the fragments may vary due to insert, update or delete operations during the life cycle of the
corresponding distributed database system. Thus the volume is considered in average.

123



A new ant colony optimization based algorithm 355

Table 1 Description of notations

Symbol Description

n The number of sites

si The i th site

SiteCapi The storage capacity of site si

UCn×n The matrix denoting the cost of unit data transmission between each two sites

uci1i2 The cost of sending a unit data item from site si1 to the site si2
m The number of fragments

f j The j th fragment

fragSize j The size of fragment f j

l The number of considered transactions

tk The kth transaction

FREQn×l The matrix denoting the execution frequency of each transaction in each site

freqik The execution frequency of transaction tk in site si

TRFRl×m The matrix denoting the direct transaction-fragment dependency

trfrk j The volume of data items of fragment f j that must be sent from site containing
f j to the site executing transaction tk , for each execution of tk

Ql×m×m The matrix denoting the indirect transaction-fragment dependency

qk j1 j2 The volume of data items that must be sent from site containing fragment f j1 to
the site storing f j2 , for each execution of transaction tk

� The m-element vector which denotes an allocation scheme

ψ j The site to which fragment f j is assigned in the allocation scheme �

COST(�) The cost of data transmission in an allocation scheme �

COST1(�) The cost of data transmission in an allocation scheme �resulting from direct
transaction-fragment dependencies

COST2(�) The cost of data transmission in an allocation scheme � resulting from indirect
transaction-fragment dependencies

STFRn×m The matrix denoting the site-fragment dependency

stfri j The volume of data items from fragment f j which are accessed by site si in unit
time (according to the site-fragment dependency)

PARTIALCOST1nxm The matrix denoting the COST1(�) incurred by allocating each fragment to each
site

partialcost1i j The cost incurred by f j allocated to site si as a result of direct transaction-frag-
ment dependency

QFRl×m×m The matrix denoting the indirect transaction-fragment dependency taking the exe-
cution frequencies of the transactions into account

qfrk j1 j2 The volume of data needed to be sent from site storing fragment f j1 to the site
having fragment f j2 in unit time taking into account the transaction frequency
of tk .

FRDEPm×m The matrix denoting the inter-fragment dependency

frdep j1 j2 The volume of data items needed to be sent from site having fragment f j1 to the
site having fragment f j2 in unit time due to the indirect transaction-fragment
dependency

123



356 R. Karimi Adl, S. M. T. Rouhani Rankoohi

Fig. 1 The dependencies of transaction on fragment along with the dependencies of sites on transaction.
Having these two types of dependencies, the dependency of sites to fragments can be inferred

One the other hand, the indirect transaction-fragment dependency is shown by a three
dimension matrix Ql×m×m in which qkj1 j2 indicates the volume of data that must be sent
from site containing fragment f j1 to the site storing f j2 , for each execution of transaction tk .

Regarding these two kinds of dependency between transactions and fragments, and the
dependencies of sites on the transactions, a proper allocation can be defined. In Fig. 1 the
dependency between sites, transactions and fragments is shown.

4.3 Cost and constraints evaluation

As stated earlier, a proper allocation is one which minimizes the costs while considering
the environmental constraints. Here, storage capacity is the only environmental constraint
considered and because the most important cost and time delay is that of data transmission
over the network, only the network data transmission cost is considered.

Assume an allocation scheme shown by the m-element vector � in which ψ j specifies
the site to which f j is allocated. Variable xi j (1 ≤ i ≤ n, 1 ≤ j ≤ m) could be defined as
follows:

xi j =
{

1 if ψj = si

0 Otherwise

Now the storage capacity constraint can be expressed as follows:

m∑
j=1

fragSize j × xi j ≤ siteCapi i = 1, . . . , n

123



A new ant colony optimization based algorithm 357

The cost of data transmission in an allocation scheme � includes COST1 and COST2:

COST(�) = COST1(�)+ COST2(�)

COST1 illustrates the cost resulting from direct transaction-fragment dependencies, whereas
COST2 is the cost of data transmission between sites due to indirect transaction-fragment
dependencies.

To calculate COST1 the amount of site-fragment dependencies must be calculated. This
amount is expressed by matrix STFRn×m in which stfri j indicates the volume of data items
from fragment f j that are accessed by site si in unit time. This matrix is defined as:

STFRn×m = FREQn×l × TRFRl×m

Or:

stfri j =
l∑

k=1

freqik×trfrk j

From this matrix, PARTIALCOST1n×m can be calculated in which partialcost1i j is the cost
of storing fragment f j in site si incurred by direct transaction-fragment dependencies. This
matrix can be calculated as follows:

PARTIALCOST1n×m = UCn×n × STFRn×m

In other words:

partialcost1i j =
n∑

q=1

uciq × stfrq j

Having matrix PARTIALCOST1n×m, the cost COST1 for an allocation scheme � can be
calculated from:

COST1(�) =
m∑

j=1

partialcost1ψ j j

To calculate COST2 it is necessary to define inter-fragment dependencies. First, according
to the matrix Ql×m×m, the matrix QFRl×m×m is built, in which qfrk j1 j2 shows the volume of
desired data to be sent from the site storing fragment f j1 to the site containing fragment f j2
in unit time taking the transaction frequency of tk into account. The elements of this matrix
are calculated as:

qfrk j1 j2 = qkj1 j2 ×
n∑

r=1

freqkr

Using matrix QFRl×m×m, matrix FRDEPm×m can be determined. In this matrix, element
frdep j1 j2 Shows the volume of data sent from site having fragment f j1 to the site having
fragment f j2 in unit time due to the indirect transaction-fragment dependencies (according
to all transactions and their execution frequencies). The elements of this matrix are calculated
as:

frdep j1 j2 =
l∑

k=1

qfrk j1 j2

123



358 R. Karimi Adl, S. M. T. Rouhani Rankoohi

Now, according to matrix FRDEPm×m,COST2 of an allocation scheme, � can be found:

COST2 (�) =
m∑

j1=1

m∑
j2=1

frdep j1 j2 × ucψ j1ψ j2

As explained in Sect. 4, our proposed algorithm has some steps and in each step, the desir-
ability of the achieved allocation scheme is calculated based on its COST using the formulae
mentioned above.

5 General concepts of ACO algorithms

Ant Colony Algorithms are used for solving many complicated problems such as routing [11],
assignment [19,20,31], scheduling [23], etc. These algorithms adopt the behavior of ants in
the real world. Ant colonies are naturally simple distributed but organized systems, and thus
appropriate to be mimicked in order to explore many distributed control and optimization
problems.

A group of ant algorithms that are based on ACO meta-heuristic are known as ACO algo-
rithms [12]. These algorithms are used to solve discrete optimization problems and here we
applied an algorithm of this type to the DAP.

6 The quadratic assignment problem (QAP)

The QAP is an NP-Complete problem [28] to which ACO algorithms are applied with con-
siderable success [32]. This problem can be defined formally as follows:

Assume n facilities with Bn×n = [
bi j

]
defined as the flow between facilities i, j and n

locations with An×n = [
ai j

]
standing for the distance between locations i, j; the objective

is to find an allocation scheme � in which each facility is assigned to exactly one location
so that the objective function f(�) is minimized. The objective function is defined with the
formula below:

f(�) =
n∑

i=1

n∑
j=1

bi j aψiψ j

Here ψi gives the location of facility i in the current allocation scheme �.
Amongst proposed heuristic approaches, there have been some ACO algorithms suggested

for the QAP, such as AS [20], µµ AS [31] and ANTS [19].
One can observe easily that the problem of minimizing COST2 (stated in Sect. 4.3) is

very similar to the QAP. Thus we have adopted some concepts from QAP in solving ACO
algorithms. More precisely, we applied a heuristic similar to the one proposed in AS algo-
rithm and some other methods used in the µµAS algorithm such as “lower pheromone trail
limit” and randomized the order of assignments. We have also applied a 2-opt local search
procedure which is used in most of the proposed ACO algorithms for the QAP.

7 The proposed ACO algorithm for DAP

In the proposed ACO algorithm for the DAP, as the ACO meta-heuristic suggests, each pair
of

(
si , f j

)
(couplings of sites and fragments) with 1 ≤ i ≤ n and 1 ≤ j ≤ m is associated

123



A new ant colony optimization based algorithm 359

with a pheromone trail τi j and a heuristic value ηi j . The τi j is updated by each ant after
each iteration and shows the probability (desirability) of fragment f j being assigned to the
site si in a near optimal (or optimal) assignment. On the other hand, ηi j , which is constant
through all iterations, is the heuristic desirability of assigning fragment f j to the site si . This
heuristic desirability is computed based on the PARTIALCOST1n×mmatrix and a coupling
matrix which will be discussed later in this section.

The generic ACO algorithm for the DAP is described below (this algorithm is designed
based on ACO metaheuristic):

Ant colony optimization algortithm for DAP

1. Initialize all pheromone trails with τ0
2. Calculate the heuristic desirability matrix η

3. WHILE no_of_iterations < MAXIMUM_ITERATIONS
4. WHILE no_of_ants < ANTS_POPULATION
5. Sort the fragments randomly
6. Create a feasible allocation scheme probabilistically
7. Improve the assignment with local search
8. Calculate the cost of improved assignment
9. no_of_ants = no_of_ant s + 1
10. END WHILE
11. Evaporate pheromone trails
12. Update pheromone trails
13. Enforce the minimum pheromone trail to be τ0
14. no_of_iterations = no_of_iteration s + 1
15. END WHILE
16. Output the best solution found so far

8 Description of our proposed ACO-DAP algorithm

8.1 Initialization

At the first step, we assign an equal amount of pheromone trail τ0 to each pair of
(
si , f j

)
.

Afterwards, the heuristic desirability should be calculated in order to be used in probabilistic
assignment of fragments to the sites. The heuristic desirability of assigning fragment f j to
site si , ηi j is calculated as follows:

ηi j = η1δi j × η2ωi j

Where η1 is the heuristic desirability corresponding to COST1. Inversely, the term η2 refers
to the heuristic desirability which is calculated according to COST2. Parameters δ and ω
give weights to these two costs. For example, in an environment in which COST2 is much
heavier than COST1, the designer can simply adjust ω value to be more than δ. The value
η1ij is computed as:

η1i j = max1≤p≤n
(
partialcost1pj

)
partialcost1i j

123



360 R. Karimi Adl, S. M. T. Rouhani Rankoohi

The computation of η2i j is a generalization of the heuristic proposed in AS_QAP [20]. We
define four vectors d1, d2, f1 and f2 which are calculated with the following formulas:

d1i =
n∑

p=1

ucip i = 1, . . . , n

d2i =
n∑

p=1

ucpi i = 1, . . . , n

f1 j =
m∑

p=1

frdep j p j = 1, . . . ,m

f2 j =
m∑

p=1

frdeppj j = 1, . . . ,m

The lower d1i is, the more central is considered the site si , when the data is to be transmit-
ted from site si to the other sites. Inversely, the lower d2i is, the more central the site si is
considered, when the data is to be transmitted from the other sites to the site si . On the other
hand, the higher f1 j is, the more data should be sent from the site containing fragment f j to
the sites containing other fragments and the higher f2 j is, the more data should be emitted
from other sites to the site containing the fragment f j .

In the next step, two coupling matrixes E1 and E2 are calculated as:

E1 = dT
1 × f1

E2 = dT
2 × f2

Where e1i j = d1i × f1 j and e2i j = d2i × f2 j . Then we make the main coupling matrix E
by simply adding E1 and E2:

E = E1 + E2

In fact, if the cost of transmitting a unit data item between each pair of sites is independent
of the direction of transmission (i.e., ∀i, j 1 ≤ i ≤ n, 1 ≤ j ≤ m, uci j = uc ji ) we would
simply define F R D P ′ matrix as follows:

∀ j1, j2 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m

frdep′
j1 j2 = frdep′

j2 j1 = frdep j1 j2 + frdep j2 j1

And compute vectors d and f with the following formula:

di =
n∑

p=1

ucip

f j =
m∑

p=1

frdep′
j p

Then the coupling matrix E = dT × f is calculated.
Now that the coupling matrix E is made (calculated either by the first formulas or by the

second), the heuristic desirability η2i j is defined as:

η2i j = 1

ei j

123



A new ant colony optimization based algorithm 361

8.2 Ants’ solutions construction

Similar to what is suggested in AS-QAP, a solution is constructed as follows:
For each ant in each iteration, fragments are sorted in a random order. At each step, the

ant (antk) assigns the next yet unassigned fragment f j to a site si which have still enough
memory to store f j . The assignment of fragment f j to a site si is done with a probability
given by (this formulation is based on what AS-QAP suggests):

pk
i j (t) =

⎧⎪⎨
⎪⎩

[τi j (t)]γ1 .[ηi j ]γ2∑
l∈Nk

j

[τl j (t)]γ1 .[ηl j ]γ2 , if i ∈ N k
j

0, otherwise

Where τi j (t) is the pheromone trail associated with the couple
(
si , f j

)
at iteration t.γ1 and γ2

are parameters determining the relative importance of pheromone trails and the heuristic infor-
mation. The term N k

j shows the sites still having enough storage capacity to save fragment

f j . In fact, the closer a fragment f j is to the end of the fragment list, the fewer sites N k
j does

contain.

8.3 Local search

After constructing a solution, each ant tries to improve its solution by applying a local search.
This local search has two phases: Exchange and Change.

8.3.1 Exchange phase

In the Exchange phase an ant follows these steps:

1. Set the_best_exchange_benefit = 0
2. If the terminating condition is not satisfied yet, chose next fragment f j (or the first

fragment if it is the first time being at step 2) from a randomly sorted fragment list.
3. Examine the benefit of exchanging the location of fragment f j with the location of

other fragments.4 Find the fragment f ∗ which provides the biggest positive benefit if
exchanged with f j .

4. If such a fragment f ∗ exists and the benefit of exchanging the location of f j with the
location of f ∗ is more than the_best_exchange_benefit (the benefit of previously accom-
plished exchange), go to step 5, Otherwise go to step 2.

5. Exchange the location of fragment f j with f ∗ and set the_best_exchange_benefit to the
benefit of exchanging the location of f j with the location of f ∗. Go to step2.

The terminating condition is satisfied when either all of the fragments are chosen from the list
or the number of accomplished exchanges equals to a parameter EX_Max. This parameter
enables the designers to have trade-off between algorithm computation time and the optimal-
ity of the solution. It ranges between 0, where no exchanging local search is applied, and m,
where all the fragments are chosen from the list.

Using the variable ‘the_best_exchange_benefit’ adds some random behavior to the local
search method and reduces the possibility of frequent reaching a local optimum.

The benefit of exchanging the location of two fragments f j1 and f j2 in an allocation
scheme � is computed as follows:

EXbenefit(�, j1, j2) = EXbenefit1(�, j1, j2)+ EXbenefit2(�, j1, j2)

4 Only those exchanges which do not threat the site capacity constraint are examined.

123



362 R. Karimi Adl, S. M. T. Rouhani Rankoohi

Where EXbenefit1(�, j1, j2) stands for the benefit achieved according to COST1 and is
calculated as follows:

EXbenefit1(�, j1, j2) = partialcost1ψ j1 j1 + partialcost1ψ j2 j2
−partialcost1ψ j2 j1 − partialcost1ψ j1 j2

On the other hand, the EXbenefit2(�, j1, j2) is the benefit gained with respect to COST2.
This benefit is computed using the following equation [33]:

EXbenefit2(�, j1, j2)

= frdep j1 j2

(
ucψ j1ψ j2

− ucψ j2ψ j1

)
+ frdep j2 j1

(
ucψ j2ψ j1

− ucψ j1ψ j2

)

+
m∑

p = 1
p �= j1, j2

⎛
⎝ frdeppj1

(
ucψpψ j1

− ucψpψ j2

)
+ frdep j1 p

(
ucψ j1

ψp − ucψ j2ψp

)
+frdeppj2

(
ucψpψ j2

− ucψpψ j1

)
+ frdep j2 p

(
ucψ j2

ψp − ucψ j1ψp

)
⎞
⎠

8.3.2 Change phase

The change phase is very similar to the Exchange. This phase consists of the following steps:

1. If the terminating condition is not satisfied yet, choose the next (or the first) fragment,
f j from a randomly sorted fragment list.

2. Examine the benefit of moving fragment f j to all other feasible sites (sites which have
still enough memory capacity to store f j ). Find the site s∗ which provides the biggest
positive benefit if f j moves to it.

3. If such s∗ site exists, change the location of fragment f j to be stored at site s∗.
4. Go to step 1.

The terminating condition is satisfied when either all of the fragments are chosen from the
list or the number of changes exceeds the value of the parameter CH_Max. The reason of
using CH_Max is identical to the one explained for EX_Max. Here we do not use a variable
such as ‘the_best_change_found’. This is because changing the location of a single fragment
has less impact on the total environment and it seems that the possibility of getting stuck in
a local optimum of change phase is less than exchange one.

The benefit of moving fragment f j to the site si in the allocation scheme � is calculated
by the following formula:

CHbenefit(�, j, i) = CHbenefit1(�, j, i)+ CHbenefit2(�, j, i)

Where CHbenefit1(�, j, i) is the change benefit due to the COST1 and CHbenefit2(�, j, i)
is the change benefit according to the COST2. These benefits can be inferred from the for-
mulas of EXbenefit. The procedure of moving fragment f j to site si could be assumed as
a special case of exchange procedure in which the second fragment is a virtual fragment
residing in site si . A virtual fragment fv could be defined as a fragment with the following
features:

1) fragsize fv = 0
2) ∀k 1 ≤ k ≤ l trfrk fv = 0 and thus ∀i 1 ≤ i ≤ n partialcost1i fv = 0
3) ∀k, j 1 ≤ k ≤ l, 1 ≤ j ≤ m Qk j fv = Qk fv j = 0

123



A new ant colony optimization based algorithm 363

And thus ∀ j 1 ≤ j ≤ m frdep j fv = frdep fv j = 0

With these properties defined for fv and assuming that ψ fv = s∗, we can now calculate
the CHbenefit1 as follows:

CHbenefit1 (�, j, i) = EXbenefit1 (�, j, fv)
= partialcost1ψ j j + partialcost1ψ fv fv

−partialcost1ψ fv j − partialcost1ψ j fv

Referring to the property2, partialcost1ψ fv fv = partialcost1ψ j fv = 0
And we have:

CHbenefit1(�, j, i) = partialcost1ψ j j − partialcost1i j

On the other hand, CHbenefit2 is computed as:

CHbenefit2(�, j, i) = EXbenefit2(�, j, fv)

= frdep j fv

(
ucψ jψ fv

− ucψ fv ψ j

) + frdep fv j

(
ucψ fv ψ j − ucψ jψ fv

)

+
m∑

p = 1
p �= j

(
frdeppj

(
ucψpψ j − ucψpψ fv

) + frdep j p

(
ucψ jψp − ucψ fv ψp

)
+frdepp fv

(
ucψpψ fv

− ucψpψ j

) + frdep fv p

(
ucψ fv ψp − ucψ jψp

) )

As property 3 implies:

frdep j fv = frdep fv j = frdepp fv = frdep fv p = 0

Therefore we have the following formula for CHbenefit2:

CHbenefit2(�, j, i)

=
m∑

p = 1
p �= j

(
frdepp j

(
ucψpψ j − ucψp i

) + frdep j p

(
ucψ j ψp − uci ψp

))

8.4 Pheromone updating

By the end of each iteration, all ants will have found a feasible solution that is improved with
the local search mechanism. After calculating the costs of each allocation, some pheromone
trails are evaporated to avoid unlimited accumulation of trails and allow the algorithm to
forget previously made improper choices [32]. Then, all ants should leave some pheromone
trails according to their achieved solution and its corresponding cost. Thus the total amount
of accumulated pheromone trail is updated as [20]:

τi j (t + 1) = ρ.τi j (t)+
no_of_ants∑

k=1

	τ k
i j

Where (1 − ρ) , with 0 < ρ < 1, represents the evaporation and 	τ k
i j is the amount of

pheromone that ant k leaves on the coupling
(
si , f j

)
. The computation of 	τ k

i j can be done
as follows [20]:

	τ k
i j =

{
Q

COST(�k)
, if ψk

j = si

0, otherwise

123



364 R. Karimi Adl, S. M. T. Rouhani Rankoohi

where Q is a parameter representing the amount of pheromone deposited by an ant.
Updating the pheromone trails in this manner may cause the pheromone trail on some

edges to become less than a lower bound τ0 and thus avoid some couples
(
si , f j

)
to be

selected in the next iterations. So, at this step all pheromone trails are checked and revised
with the following formula:

τi j (t + 1) =
{
τ0 ifτi j (t + 1) < τ0

τi j (t + 1) otherwise

Preparing the pheromone trails, we can now go to the next iteration. The best result achieved
through all of the iterations is printed at the end of the algorithm.

9 The alternative algorithm for comparison

In order to evaluate the performance of our algorithm, we have chosen a modified version
of the SE data allocation algorithm [1] to be compared with our proposed method. This
algorithm has been reported to outperform other algorithms such as genetic data allocation,
mean field annealing, and random search algorithms in a reasonable time.

9.1 Simulated evolutionary algorithm (original version)

The generic SE data allocation algorithm is as follows [1]:
Simulated Evolutionary Data Allocation Algorithm

(1) Construct the first chromosome based on the problem data and perturb this
chromosome to generate an initial population

(2) Use the mapping heuristic to generate a solution for each chromosome
(3) Evaluate the solutions obtained
(4) No_of_generation s = 0
(5) WHILE no_of_generations < MAX_GENERATION DO
(6) Select chromosomes for next population
(7) Perform crossover and mutation for these set of chromosomes
(8) Use the mapping heuristic to generate solution for each
(9) chromosome

(10) Evaluate the solutions obtained
(11) no_of_generation s = no_of_generation s + 1
(12) ENDWHILE
(13) Output the best solution found so far

The chromosome structure is defined as follows:

The number of genes in part a is equal to the total allocation limit and this part specifies
the storage capacity limit. On the other hand, each gene in part b corresponds to a fragment
specifying the priority of that fragment to be considered in the allocation procedure.

In part a each gene is designed to be a single bit. A value of 1 indicates that the corre-
sponding allocation space is allowed to be used for this chromosome; otherwise the space
could not be used. It must be checked whether the new effective allocation limit is enough for
all fragments to be allocated. In the original definition of the algorithm this is simply done

123



A new ant colony optimization based algorithm 365

by counting the number of 1s in part a and checking that this sum is greater than or equal to
the total number of fragments.

After the creation of the first generation, the mapping heuristic is applied to extract the
allocation scheme proposed by each chromosome. This mapping heuristic is explained in
detail in [1].

At the end of each generation, the fitness of each chromosome is determined according to
the computed cost of its achieved solution. For the next generation, the parents are selected
with a probability proportional to their fitness. Performing the crossover and mutation pro-
cedures on each pair of parents yields two new children.

The process of creating a new generation and evaluating their corresponding allocations is
done until the number of generations reaches a maximum limit. Then the best result achieved
through all of the generations is given as the output of the algorithm.

9.2 Modified SE algorithm

Since the original definition of the SE algorithm [1] is not intended for a general situation,
we have added and modified some parts in order to make the algorithm capable of dealing
with our different test environments. The modified or added parts are listed below:

1. The original definition of this algorithm states that “the number of genes in part a is
equal to the total allocation limit”. This definition is ambiguous. Thus we have set the
number of genes in part a to be equal to the number of sites.

2. In the original algorithm, each gene in part a is designed to be a single bit but the binary
logic is only applicable in the situation where all fragments are of the same size and
each site only saves one fragment. However, it can easily be noticed that the explained
environment is too rare in reality. So we have changed this part of the algorithm and
defined each gene gai in part a to have a value selected from the range

[
0, siteCapi

]
.

This value indicates the free space on site si in the corresponding chromosome.
3. With the modified definition of part a, the first chromosome is made with all genes in

part a set to the site capacity of their corresponding sites. For the remaining chromo-
somes in the initial population, the value for each gene gai in part a is chosen randomly
from

[
0, siteCapi

]
.

4. The process of checking whether the new effective allocation limit is enough for all
fragments to be allocated cannot be done in the way suggested by the original version of
the algorithm. The reason is that the method mentioned above cannot be applied to the
environments with heterogeneous fragment sizes. Thus we have modified the checking
method and defined a probably feasible chromosome as one which obeys the following
restriction:

m∑
k=1

fragSizek ≤
n∑

k=1

gak

If this criterion does not hold true for a chromosome, then the chromosome is obviously
not a feasible one. But we should notice that this constraint does not guarantee a feasi-
ble chromosome. For example, suppose an environment with two fragments: f1 and f2

which should be allocated to three sites: s1, s2 and s3. If we have the following condition:

fragSize1 = fragSize2 = 30

123



366 R. Karimi Adl, S. M. T. Rouhani Rankoohi

A chromosome such as the one shown below, despite its inability to violate the stated
constraint, is obviously an infeasible one.

In our implementation of the SE data allocation algorithm, for each chromosome we first
examine the previously stated condition and if it is violated, we reset all genes in part a to
be identical to the values of part a of the first chromosome; otherwise we do not change
it at this step. Later in the mapping phase, where an allocation is determined based on
a chromosome, if a fragment is found at any step that cannot be assigned to any of the
sites due to insufficient storage capacity, a random gene gai in part a is selected and its
value is set to siteCapi . The mapping procedure is then restarted.

5. As the representation of part a of the chromosomes has been modified, the mutation
method should be changed as well. In the original version of the algorithm, mutation in
part a sets the value of a selected gene to either 1 or 0. Here, we have defined the mutation
process on part a of a chromosome to select a genegai randomly and set its value to a
random value chosen from

[
0, siteCapi

]
.

Using these modifications, we have generated some test data and compared the modified SE
algorithm with our proposed one.

10 Experiment environment

To evaluate the proposed ACO-DAP algorithm we tested it through a number of experiments.
In each experiment, we let one parameter vary while fixing others. Our test data generation
process follows some structured rules which are explained in Sect. 10–2.

10.1 The hardware/software configuration

The experiments are all done in an environment using a 1.86 GHz Intel Pentium M 750 pro-
cessor with 1 Giga bytes of DDR2 RAM with Microsoft Windows XP Professional SP2 as the
operating system. The ACO-DAP and SE algorithms were implemented in the programming
environment provided by MATLAB 2006. The algorithms are then tested by the same test
data generated by the rules which are defined in the next section.

10.2 Test data generation

To compare our algorithm with the SE algorithm mentioned above, we have implemented
a test data generator which gets number of fragments m, number of sites n and some other
parameters (which will be defined later) as input and creates a random DAP instance as
follows:

Fragment sizes

For each fragment f j the fragment size fragSize j is chosen randomly5 from
[ c

10 ,
20×c

10

]
.

Where c is an input parameter defined as:

5 All of our random selections are based on a uniform random distribution.

123



A new ant colony optimization based algorithm 367

c ∈ A = { x | x ∈ N ∧ 10 ≤ x ≤ 1,000}
In fact the c parameter is an approximation of the average of the fragment sizes.

Site capacities

We have designed our test data generator to create a rigorous site capacity constraint where
site capacities are chosen to be very low. However, we have followed a specific strategy to
create a situation in which for every fragment (even the last one) there would exist a site that
still has enough memory capacity for storage. This condition should hold true regardless of
the order in which fragments are considered to be allocated.

In this strategy, we first assume to have m fragments all being the same size of the largest
fragment. Then for each site si a random number pi is chosen which shows the number of
the fragments mentioned above (big size fragments) which can be saved in it. The pi value
is chosen randomly from

[
1, 2 × m

n − 1
]
. Note that pi ∈ N . However, we want to have a

somehow rigorous site capacity constraint in which
∑n

i=1 pi = m. Thus whenever we assign
pi to a site si , we should calculate the number of remaining fragments (fragments without
any space to be stored in) as follows:

r fi = m −
i∑

q=1

pq

We should make sure that the number of remaining sites (sites, sr without any pr defined
over yet) is less than r fi .

As long as this condition does not hold, we choose another random value for pi as men-
tioned before. Notice that for the last site sn,we directly set the value of pn using the following
formula:

Pn = m −
n−1∑
q=1

pq

Now that every site si is associated with a pi , the value for siteCapi is determined as follows:

siteCapi = pi × max
1≤ j≤m

(
fragSize j

)

Transmission costs:

The test data generator gets the parameter UCN (Unit transmission Cost between two Neigh-
boring sites) as an input and randomly generates the value forUCi1 i2 from [UCN, n × UCN] ,
where n is the number of sites.

Site-fragment dependency:

To generate the STFR matrix, transaction frequencies and transaction-fragment dependency
should be defined first. The test data generator receives an input parameter RPT (0<RPT≤1)
which shows the probability of a transaction being requested at a site. Using this parameter,
a list of sites at which a transaction tk is requested is defined probabilistically. Then for each
site si in this list, the frequency of requesting transaction tk(freqik) is determined through a
uniformly distributed random value in the range [1, 1,000] . For any other site sr that does
not require tk, the value for freqik is simply set to zero.

123



368 R. Karimi Adl, S. M. T. Rouhani Rankoohi

Similarly, for the transaction-fragment dependency, the test data generator receives another
input parameter APF (0 < APF ≤ 1) , which denotes the probability of a fragment being
accessed by a transaction. With this parameter, a list of fragments being accessed by a
transaction tk is defined probabilistically and for each fragment f j in this list, the trans-
action-fragment dependency trfrk j is chosen from a uniformly distributed random value in[
0, fragSize j

]
. For those fragments fr that are not in the tk’s accessing fragments list, the

value of trfrkr is set to zero.
Having FREQn×l and TRFRl×m matrices, the site-fragment dependency matrix STFRn×m

is calculated as:

STFRn×m = FREQn×l × TRFRl×m

Inter-fragment dependency:

To generate the FRDEPm×m matrix, the test data generator requires a parameter APFS which
denotes the probability of a certain transaction causing some data transmission from the
location of a specific fragment to the location of another given fragment. Increasing APFS
yields more affinity and cohesion between fragments and intensifies the effect of COST2 on
the final COST.

Using APFS parameter, for each pair of fragments
(

f j1 , f j2

)
, a list of transactions T j1 j2

which urge data transmission from the site containing f j1 to the site containing f j2 is defined
probabilistically. Then, for each transaction tk in T j1 j2 the value of qkj1 j2 is chosen randomly
from

[
0, fragSize j1

]
. For other transactions tr where tr /∈ T j1 j2 , the value for qr j1 j2 is set

to zero. Having generated the Ql×m×m matrix, the QFRl×m×m matrix and thus FRDEPm×m

are calculated using the equations mentioned in Sect. 4.3.

11 Experimental results

As stated earlier, we have compared our algorithm with a modified version of the SE data
allocation algorithm. The comparison is done according to 210 different configurations of
the DAP. In each problem instance, the number of fragments, m, and the number of sites,
n, are chosen from [3, 50] with the constraint that n should be less than or equal to m. 20
different values for the number of fragments and sites are selected from [3, 50], which yields
210 problem configurations. The comparison criteria are the solution cost as well as the algo-
rithm’s running time, and the ultimate goal is to observe the effect of the size of the problem
on the quality of achieved solutions.

For each test, the number of fragments and sites are defined and the test data generator is
used to create a problem instance. We have fixed other input parameters of the data generator
to the values shown in Table 2.

The values for the probability parameters RPT and APF are chosen to be as close as
possible to those in real problems. We have experimentally examined different values for
the APFS parameter and chose the value which usually results in solutions with nearly equal
values for COST1 and COST2.

The maximum number of iterations (or generations in the SE algorithm) is set to 200
for all algorithms. Increasing this value may yield better solutions but since the goal of the
experiments was to conduct a comparison, this value was deemed to be sufficient.

We have tested three versions of our ACO data allocation algorithm against the SE algo-
rithm:

123



A new ant colony optimization based algorithm 369

Table 2 Selected values for the parameters

Parameter description Parameter name Value

Approximation of the average fragment size c 10

Unit transmission cost between two neighbor sites UCN 1

Number of transactions l 20

Probability of a transaction being requested at a site RPT 0.7

Probability of a fragment being accessed by a transaction APF 0.4

Probability of a transaction necessitates data transmission between
two sites (other than the originating site)

APFS 0.025

Fig. 2 Evaluating the results achieved by the algorithms in a type1 comparison

The α version: In this version we set CH_Max and EX_Max to zero which means no
usage of the local search.

The β version: In this version we have CH_Max = m and EX_Max = 3 which causes a
slightly lightweight local search.

The γ version: Finally in this version we set CH_Max = EX_Max = m and thus used
the maximum power of our local search method.

The results are organized into two types of diagrams: in type1 we have fixed the number
of fragments and tested the algorithms with variable numbers of sites. On the other hand,
in type2 the number of sites is fixed and the number of fragments varies. Thus a total num-
ber of 40 diagrams are generated from which we have selected the following four diagrams
(Figs. 2, 3, 4, 5).

According to the above diagrams (Figs. 2, 3, 4, 5) in most cases compared to the SE
algorithm the proposed ACO-DAP algorithm (using local search procedure) provides better
results. This superiority increases as the number of sites or fragments increases, which implies
that the ACO data allocation algorithm is more scalable than the alternate SE data alloca-
tion algorithm. However, the higher quality solutions appear only at the cost of higher time

123



370 R. Karimi Adl, S. M. T. Rouhani Rankoohi

Fig. 3 Evaluating the computation time of the algorithms in a type1 comparison

Fig. 4 Evaluating the results achieved by the algorithms in a type2 comparison

complexity of our algorithm. In order to address this problem the defined CH_Max and
EX_Max parameters help the designer to achieve a desirable tradeoff between solution quality
and algorithm’s running time. Consequently, the merit of our proposed ACO-DAP algorithm
can be distinguished with its high quality solutions, scalability and flexibility.

By further analyzing the diagrams, it can be seen that the γ version of the ACO data allo-
cation algorithm outperforms the others. However, this algorithm is the most time consuming
version. Thus γ version is recommended whenever the quality of the solution is the main
concern and not the computation time. One should note that in most cases these computations
are done occasionally and the results are used for a long period of time. On the other hand, in

123



A new ant colony optimization based algorithm 371

Fig. 5 Evaluating the computation time of the algorithms in a type2 comparison

a shorter period of time the β version provides better solutions than the SE algorithm (notice
how close is the β curve to the γ ). Therefore if the main concern is the computation time,
one can use customized values for the CH_Max and EX_Max in order to achieve a desirable
time complexity and solution quality tradeoff. Finally, the α version as it can be seen in the
diagrams, gives the worst solution among the four curves. This fact reveals one of the merits
of applying local search in the algorithm.

12 Conclusion

In this paper, we addressed prominent issues of non-replicated data allocation in distributed
database systems with memory capacity constraint. We took query optimization and integrity
enforcement mechanisms in the formulation of the DAP into consideration. We also proposed
a new data allocation algorithm called ACO-DAP which had been defined based on ACO
meta-heuristics and combined it with a local search procedure.

The main contribution of this work is the clear definition provided for the DAP which not
only considers the query optimization and integrity enforcement mechanism but also exploits
the ACO concepts to solve the problem.

In our experimental studies, we have evaluated and compared the optimality of solutions
and the execution time of three different versions of the ACO-DAP algorithm with that of a
revised version of one of the most successful algorithms in this field known as SE algorithm
[1]. The results prove the high scalability of the proposed algorithm and we found the ACO-
DAP algorithm to have superior transaction response times to SE in DAPs of various sizes
especially large ones. However, depending on the amount of applied local search, the time
complexity of different versions of the ACO-DAP algorithm may become worse than that of
the SE algorithm.

The impact and the influence of the local search mechanism which exist on the ACO-DAP
algorithm, on the overall results and consequently on the computation time, have been studied
in several experiments. Our experimental results demonstrated the merits of using the local

123



372 R. Karimi Adl, S. M. T. Rouhani Rankoohi

search procedure in achieving appropriate data allocation schemes. These results also show
the flexibility of our algorithm which provides a diverse range of solution quality and time
complexity trade-offs.

In the future, we plan to extend our algorithm to provide solutions for the DAP with
replication. Additionally, other plausible direct extensions would be completing the problem
formulation, expansion of our experiments in order to cover a larger variety of values for
other parameters and rearrangement of algorithms for DAP based on other meta-heuristics
such as Particle Swarm Optimization or Neural Networks.

References

1. Ahmad I, Karlapalem K, Kwok YK et al (2002) Evolutionary algorithms for allocating data in distributed
database systems. Int J Distrib Parallel Databases 11(1):5–32. doi:10.1023/A:1013324605452

2. Bell DA (1984) Difficult data placement problems. Comput J 27(4):315–320
3. Bell D, Grimson J (1992) Distributed database systems. Addison-Wesley Longman Publishing Co., Inc,

Boston
4. Brunstrom A, Leutenegger ST, Simha R (1995) Experimental evaluation of dynamic data allocation strat-

egies in a distributed database with changing workloads. ICASE: Institute for Computer Applications in
Science and Engineering

5. Buchholz S, Buchholz T (2004) Replica placement in adaptive content distribution networks. In: SAC
’04: proceedings of the 2004 ACM symposium on applied computing, Nicosia, pp 1705–1710

6. Ceri S, Pelagatti G (1984) Distributed databases principles and systems. McGraw-Hill, Inc., New York
7. Chu WW (1969) Optimal file allocation in a multiple computer system. IEEE Trans Comput 18(10):885–

889
8. Cook SA, Pachl JK, Pressman IS (2002) The optimal location of replicas in a network using a READ-

ONE-WRITE-ALL policy. Distrib Comput 15(1):57–66
9. Corcoran AL, Hale J (1994) A genetic algorithm for fragment allocation in a distributed database system.

In: SAC ’94: proceedings of the 1994 ACM symposium on applied computing, Phoenix, pp 247–250
10. Daellenbach HG, George JA, McNickle DC (1983) Introduction to operations research techniques (2nd

edn). Allyn and Bacon, Boston
11. Di Caro G, Dorigo M (1998) An adaptive multi-agent routing algorithm inspired by ants behavior. In:

Proceedings of PART98-5th annual Australasian conference on parallel and real-time systems, Singapore,
pp 261–272

12. Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge
13. Frieder O, Siegelmann HT (1997) Multiprocessor document allocation: A genetic algorithm approach.

IEEE Trans Knowl Data Eng 9(4):640–642
14. Gu X, Lin W (2006) Practically realizable efficient data allocation and replication strategies for distributed

databases with buffer constraints. IEEE Trans Parallel Distrib Syst 17(9):1001–1013
15. Ibrahim H (2005) Checking integrity constraints in a distributed database. Encyclopedia of database

technologies and applications, pp 66–73
16. Koopmans TC, Beckmann MJ (1957) Assignment problems and the location of economics activities.

Econometrica 25:53–76
17. Laning LJ, Leonard MS (1983) File allocation in a distributed computer communication network. IEEE

Trans Comput 32(3):232–244
18. Lee Z, Su S, Lee C et al (2003) A heuristic genetic algorithm for solving resource allocation problems.

Knowl Inf Syst 5(4):503–511
19. Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures for the quadratic

assignment problem. Inf J Comput 11(4):358–369
20. Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IEEE Trans

Knowl Data Eng 11(5):769–778
21. Mei A, Mancini LV, Jajodia S (2003) Secure dynamic fragment and replica allocation in large-scale

distributed file systems. IEEE Trans Parallel Distrib Syst 14(9):885–896
22. Menon S (2005) Allocating fragments in distributed databases. IEEE Trans Parallel Distrib Syst

16(7):577–585
23. Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for sched-

uling a single machine. Appl Intell 18(1):105–111

123

http://dx.doi.org/10.1023/A:1013324605452


A new ant colony optimization based algorithm 373

24. Navathe S, Ceri S, Wiederhold G et al (1984) Vertical partitioning algorithms for database design. ACM
Trans Database Syst 9(4):680–710

25. Ozsu T, Valduriez P (1999) Principles of distributed database systems, 2nd edition
26. Peterson C, Soderberg B (1989) A new method for mapping optimization problems onto neural networks.

Int J Neural Syst 1(1):3–22
27. Ram S, Marsten RE (1991) A model for database allocation incorporating a concurrency control mech-

anism. IEEE Trans Knowl Data Eng 3(3):389–395
28. Sahni S, Gonzalez T (1976) P-complete approximation problems. J ACM 23(3):555–565
29. Sarathy R, Shetty B, Sen A (1997) A constrained nonlinear 0–1 program for data allocation. Eur J Oper

Res 102(3):626–647
30. Shahabi C, Khan L, McLeod D (2000) A probe-based technique to optimize join queries in distributed

internet databases. Knowl Inf Syst 2(3):373–385
31. Stutzle T (1997) MAX-MIN ant system for the quadratic assignment problem. In: Technical report AIDA-

97-4, FG Intellectik, FB Informatik, TU Darmstadt
32. Stutzle T, Dorigo M (1999) ACO algorithms for the quadratic assignment problem, pp 33–50
33. Taillard E (1995) Comparison of iterative searches for the quadratic assignment problem. Location Sci

3:87–105
34. Ulus T, Uysal M (2003) Heuristic approach to dynamic data allocation in distributed database systems.

Pakistan J Inform Technol 2(3):231–239
35. Zhu Q, Tao Y, Zuzarte C (2005) Optimizing complex queries based on similarities of subqueries. Knowl

Inf Syst 8(3):350–373

Author Biographies

Rosa Karimi Adl Received the B.S. and M.S. degrees in Com-
puter Engineering-Software from Shahid Beheshti University, Iran in
2005 and 2007, respectively. She is currently a Ph.D. student under
Prof. Keneth Barker’s supervision at the department of Computer Sci-
ence at the University of Calgary. Her research interests include dis-
tributed database systems, artificial intelligence, and privacy preserving
data repositories.

Seyed Mohammad Taghi Rouhani Rankoohi received his bachelor’s
degree in mathematics from Tehran University, Bachelor’s and Master’s
degree in informatics, and the D.E.S.S degree in Teleinformatics from
Pierre and Marie Curie University in Paris. He is an assistant profes-
sor at Shahid Beheshti University (SBU). He has mostly lectured on
File Engineering and Databases at SBU and other universities such as
Sharif University of Technology and Tehran University. His publica-
tions include several papers published in Iranian journals and conference
proceedings, four translations of textbooks into Farsi, as well as seven
authored books, all of which are widely used as textbooks in Iran. He
has received the “Book of the Year” award in 1994 and 2003 .Two of
his books have also been honored as the “Selected Academic Book of
the Year” by Tehran University in 1992 and 2002. His research interests
include Databases Systems, Web-DBMS integration and File Engineer-
ing. Reading modern literature is among his hobbies.

123


	A new ant colony optimization based algorithm for data allocation problem in distributed databases
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem definition
	4.1 Data allocation in distributed database systems
	4.2 Pertinent parameters
	4.3 Cost and constraints evaluation

	5 General concepts of ACO algorithms
	6 The quadratic assignment problem (QAP)
	7 The proposed ACO algorithm for DAP
	8 Description of our proposed ACO-DAP algorithm
	8.1 Initialization
	8.2 Ants' solutions construction
	8.3 Local search
	8.4 Pheromone updating

	9 The alternative algorithm for comparison
	9.1 Simulated evolutionary algorithm (original version)
	9.2 Modified SE algorithm

	10 Experiment environment
	10.1 The hardware/software configuration
	10.2 Test data generation

	11 Experimental results
	12 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


