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We develop the relationship between speed and density to analyse the flow of traffic under
the operation of variable speed limits. By statistical analysis of traffic data from the UK
motorway network, we find that the functional form preferred for this does not have an
explicit jam density that will induce zero speed in traffic. We deduce that it is zero speed
that induces jam density in traffic rather than vice versa, so that the direction of causality
between speed and density differs according to circumstances. We develop an approach to
modelling traffic in light of this. We apply this to analyse speed control as a traffic manage-
ment measure and show how it can be used to estimate the effect of speed management on
road capacity.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Variable speed limits are used on motorway roads to manage traffic flows with the intention of improving capacity and
hence throughput of traffic. In order for this control of traffic speeds to affect the quality of traffic flow, speed should have a
causal influence on the traffic flow. This is distinct from the more usual approach to modelling of traffic flow in which density
is taken to determine speed, and hence flow; there is some accordance with models that use different relationships between
speed and density according to circumstance. In this paper, we investigate the relationships among speed, flow and density
that are apparent in motorway traffic data under each of normal and speed-controlled operation. We discover evidence for
circumstances in which speed is the influential quantity – typically under speed-controlled conditions – and others under
which density is the influential quantity – typically in low-density conditions.

Descriptions of traffic flow at a point that are based upon the three quantities of speed (v), flow (q) and density (k) are well
established. Analysis of their definitions leads in the case of homogeneous traffic directly to the formula that has become
known as the fundamental equation (Greenshields, 1935):
q ¼ km; ð1Þ
where q is flow, measured in vehicles per unit of time, k is density, measured in vehicles per length of road, and m is space-
mean speed (Wardrop, 1952), measured in length per unit of time.

This fundamental equation can be supplemented by adoption of a model relationship to describe the association between
speed and density of the form
m ¼ f ðkÞ: ð2Þ
Traffic flow can be analysed effectively following on from these relationships (see, for example, Wardrop, 1952; Lighthill
and Whitham, 1955; Leutzbach, 1988; Daganzo, 1997). When Eq. (2) is populated with an explicit form, any one of the three
variables (speed v, flow q, and density k) can be used to calculate values for the other two, subject to the ambiguity between
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free-flow and congested values of flow q. Higher order models of traffic flow have been developed that use (2) as an equi-
librium relationship for steady-state flows, towards which traffic speeds will relax over time (Zhang et al., 2001). Several
authors have suggested that different relationships should apply according to the circumstances (for example, Hall et al.,
1992; Zhang, 1999); typical variations in circumstances are according to accelerating or decelerating traffic, whilst in the
present paper we consider the circumstances according to the prevailing speed limit. Whichever of these model develop-
ments is pursued, the purpose is to describe traffic flow, to project from current traffic states to future ones, and to develop
a deeper understanding of the behaviour of traffic as a medium and its gross response to management measures.

Whilst Eq. (1) follows inexorably from the definitions of the quantities that are involved, equations of the form (2) rep-
resent descriptive models of traffic behaviour. Two consequences follow from this in respect of Eq. (2): first that the choice of
the function f(�) is ad hoc, and second that because this is used to represent an association between speeds and densities –
irrespective of the model development within which it is adopted – no inference can be drawn from it concerning causality.
A key element of this modelling, which we investigate here, is the identification of causal relationships between the vari-
ables: this becomes crucial when variable speed limits are applied as traffic management measures.

In this paper, we investigate the relationship between speed and density (for which detector occupancy is used as a
proxy). We consider a range of different speed–density functions, and establish clear preference for one that does not have
a finite density that causes speed to become zero. However, we note that stationary traffic does attain a certain maximum
density, which is know as jam density kj. We deduce that under some conditions such as this, speed determines density. We
use this observation to explore the effects of variable speed limits as a traffic management measure as is used on some busy
sections of motorway roads in the UK. This leads us to estimate speed–density relationships differently according to the
presence or absence of speed control, with consequences for estimates of the capacity of the road. Another consequence
of this preference for a speed–density relationship without a jam density is that it is consistent with the presence of stable
start waves in dense traffic, as have been observed (Zhang, 1999).
2. Modelling traffic flow

2.1. Introduction

In this section, we raise various issues that arise in modelling traffic flow. First, we consider the way in which quantities
that can be measured practically relate to those used in the fundamental equation (1). We then consider a range of different
functional forms that could be used to represent the relationship that is expressed formally in (2) between speed and den-
sity: for each of these candidate relationships, we investigate certain properties. We then address the statistical estimation of
these models from observed data, and identify a suitable approach for this together with associated statistical criteria.

2.2. Properties of traffic models

Although the fundamental equation (1) is expressed in terms of the density k of traffic, direct measurement of this quan-
tity can be difficult in practice as it requires instantaneous observation of a substantial length of road. A more practical ap-
proach that is in widespread current use (Hall, 2001) is based upon the proportion of time x for which a fixed detector is
occupied, which is known as the detector occupancy. Thus on a homogeneous section of road, the spatial proportion xs of
the length that is occupied by vehicles will be
xs ¼ kL; ð3Þ
where L is the mean effective length of a vehicle. Provided that the speed of traffic is constant along the length of this section
so that x = xs, the occupancy x of a detector on it can be used to estimate density as
k ¼ x=L: ð4Þ
From this relationship, density is proportional to mean occupancy; it is therefore sometimes more convenient to express
speed directly as a function of occupancy rather than as one of density, thus m = f(x). This then leads to the relationship be-
tween flow and occupancy as
q ¼ f ðxÞx=L: ð5Þ
We note, however, that the mean effective length of vehicles can differ between traffic in different lanes of a motorway,
and between traffic control states (Heydecker and Addison, 2008), and this will influence estimates of flow and capacity that
are made using (5).

This form of the fundamental relationship (5) between flow and occupancy can be used to determine several properties of
the traffic model. In the present context we note that if this relationship is concave throughout its domain (i.e. with negative
curvature given by the second derivative q00 of flow with respect to occupancy) then stable shock waves can only occur as
transitions from low to high occupancy; start waves, where the spatial gradient of traffic density in the direction of travel
is negative, will lead to rarefaction waves (Lighthill and Whitham, 1955) so that jammed traffic will disperse from the down-
stream boundary. However, if the fundamental relationship has a subdomain within which it has positive curvature (i.e.
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where q00 > 0) then stable start waves can arise when traffic accelerates from a region with occupancy in this subdomain to a
region of lower occupancy (see, for example, Morgan, 2002). Regions of this kind occur in speed–density functions that do
not have a value of density that gives zero speed: models that have this positive curvature are consistent with the observed
phenomenon of stable start waves, but without necessarily providing a mechanism for their occurrence.

As the traffic density, and hence occupancy, diminishes towards 0, the opportunities for interactions between vehicles in
the traffic will diminish and so vehicles will tend to travel at some free-flow speed denoted here as m0. On the other hand,
when traffic is forced to stop as, say, at a red traffic signal or an obstruction on the road, it will do so at a certain jam density
with an associated expected value of jam occupancy, here denoted as xj. Throughout the present paper, we suppose these
two quantities of free-flow speed and jam occupancy to be well determined, as seems reasonable from the arguments pre-
sented above. However, we note here that the direction of causality differs between the arguments presented in these two
cases. There seems to be no reasonable argument that travelling at free-flow speed will itself induce low density and occu-
pancy of traffic. However, the counterpart question of whether or not traffic at jam density could move at non-zero speed is
open at this stage and is one to which we will return.
2.3. Modelling approaches

A speed–occupancy model relationship m = f(x) can be estimated from paired observations of speed and occupancy as
mi ¼ f ðxiÞ þ ei; ð6Þ
where ei is an error term for the estimated speed. Statistical procedures can be applied to estimate parameters of a given
model form for f(�), and these generally depend on the statistical distribution that is adopted for the error term e. This for-
mulation supports the hypothesis that traffic speed is determined by traffic density (as represented here by occupancy),
whilst recognising the possibility that individual observations of speed deviate from the typical value that is associated with
the prevailing occupancy.

An alternative view is that the traffic assumes a certain density and hence occupancy depending on the prevailing speed.
Thus, for example, in slow traffic conditions, drivers could choose to follow at a headway (and hence density and occupancy)
that is comfortable for them given the prevailing speed. This leads to a statistical model formulation as
xi ¼ gðmiÞ þ gi ð7Þ
where gi is an error term for the estimated occupancy. In this case, the form of the function g(�) is inverse to that of f(�).
In fitting either of models (6), (7), the criterion adopted in the present study is maximum likelihood according to the

statistical distribution of the error term. The log-normal distribution adopted for this is appropriate for continuous quantities
such as speed and occupancy that are of definite sign, and provides parameters to represent the mean and the variance of the
data. The variate x has log-normal distribution with parameters l and r if loge(x) has the normal distribution with mean l
and variance r2. Thus the probability density function of a lognormally distributed variate x is
pðxjl;rÞ ¼ 1
x r

ffiffiffiffiffiffiffi
2p
p exp

�ðlogeðxÞ � lÞ2

2r2

 !
: ð8Þ
This function also quantifies the likelihood of the parameters (l, r) given the observation x, and its logarithm (the log-
likelihood) can be summed over observations to provide the joint log-likelihood, which provides a useful measure of perfor-
mance of a statistical model.

The parameters of this distribution can be estimated to maximise the logarithm of their likelihood by solving for l̂ the
quadratic minimisation:
Minimise
l

Xn

i¼1

ðlogeðxiÞ � lÞ2 ð9Þ
after which the parameter r can be estimated as
r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðlogeðxiÞ � l̂Þ2

r
: ð10Þ
We use the likelihood ratio test (Washington et al., 2003) to test for support for variations to a model. This test statistic for
an extension to a model by introduction of m parameters from a set h to an extended one h+ is
k ¼ �2ð‘�ðh; xÞ � ‘�ðhþ; xÞÞ: ð11Þ
Under the null hypothesis that the distribution is specified fully by the parameters h, this test statistic asymptotically in n
has the v2 distribution on m degrees of freedom.
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2.4. Traffic models

Several forms have been proposed in the literature for the function f(�) between occupancy and speed, and hence for its
inverse g(�). Drake et al. (1967) investigated a range of possibilities. These included Greenshields’ (1935) linear relationship
f ðxÞ ¼ m0ð1�x=xjÞ; ð12Þ
which confers the analytical advantage of giving convenient closed formulae for each of the five other bivariate relationships
among speed, flow and occupancy. Drake et al. extended this to piecewise linear relationships, considered Underwood’s and
Greenberg’s relationships described below, and also Drake’s relationship f ðxÞ ¼ m0 exp½�0:5ðx=xmÞ2�, which has subdo-
mains of each of negative and positive curvature f00.

Underwood’s (1961) model relationship between speed and density was intended primarily for use in free-flow condi-
tions. This can be expressed in terms of occupancy as
f ðxÞ ¼ m0 expð�x=xmÞ; ð13Þ
where xm is the occupancy that gives rise to the maximum flow of q� = v0xm/eL, with corresponding speed m = m0/e. This
model has an explicit free-flow speed m0, but there is no value of occupancy that will cause the speed to be 0 so that it is
consistent with the possibility that traffic can travel at a non-zero speed even when it is at jam density. According to this
model, the second derivative of flow with respect to occupancy is
q00 ¼ m0

xm L
x
xm
� 2

� �
exp

�x
xm

� �
ð14Þ
so that the fundamental relationship between flow q and occupancy x has negative curvature in the subdomain [0, 2xm) and
positive curvature for greater values of occupancy. Thus according to this model, stable start waves can arise when traffic
accelerates from a region in which the occupancy exceeds 2xm into a region of lower occupancy. The range of possible
speeds for this start wave is determined by the first derivative q0 to be between �m0e�2 when x = 2xm to
�m0(1 �xm

�1) exp(�xm
�1) when x = 1.

Greenberg’s (1959) model relationship between speed and occupancy was intended for use at high densities. This can be
expressed in terms of occupancy as
f ðxÞ ¼ mm loge
xj

x

� �
: ð15Þ
In this model, mm is the speed that gives rise to the maximum flow of q� = mm xj/eL, which occurs when x = xj/e. This mod-
el has an explicit jam occupancy xj, but there is no bound on the speed as occupancy approaches 0. Because of this, although
this model might be suitable to represent congested conditions, it is not suitable for free-flow conditions. According to this
model, the second derivative of flow with respect to occupancy is
q00 ¼ �mm

x L
< 0 ð16Þ
so that the fundamental relationship is concave throughout its domain. According to this model, stable shock waves can only
occur when traffic passes from a region into another of greater occupancy, thus undergoing an abrupt decrease in speed.

Edie (1961) developed a speed–density model that conforms to Underwood’s (13) at low density and to Greenberg’s (15)
at high density. In the standard form of this model, the transition between these components is made smoothly (i.e. with
continuity of q and of q0) at the point of maximum flow. In order to achieve this, the parameters of the two elements are
related as mm = m0/e, and xm = xj/e so that the capacity is q� = m0xj/e2. In the present study, we view this model as providing
an alternative to Underwood’s (13) in which the high occupancy relationship follows Greenberg’s form (15), and hence has a
finite jam density and is concave throughout.

Other models have been developed that can be used to relate speed to occupancy; notable amongst these are the para-
metric family considered by Del Castillo and Bentez (1995) that varied between the forms
f ðxÞ ¼ m0½1� expð1� expðaðxj=x� 1ÞÞÞ�
and
f ðxÞ ¼ m0½1� expðað1�xj=xÞÞ�:
This family provides smooth approximations to the form
f ðxÞ ¼ m0Min 1;
xm

x
xj �x
xj �xm

� �� �
;

which gives a two-part linear fundamental diagram with triangular profile. All of these models have a finite jam density xj/L
that gives rise to zero speed and fundamental diagrams that are concave.

The two relationships between speed and occupancy that we consider in detail here are continuous but non-linear. This
has the disadvantage of analytical inconvenience in that closed formulae are not generally available to calculate either speed
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Fig. 1. Observations of occupancy and speed in lane 1.
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or occupancy from specified values of flow. Inspection of the observed relationship (see Fig. 1) between speed and occupancy
in the dataset that we use in the present analysis shows positive curvature but little evidence for discontinuity in speed as
occupancy varies. The two speed–occupancy relationships that we investigate have positive curvature f 00 > 0 throughout the
range of occupancy, which makes them suitable to represent the data used in this study. This analysis can be applied readily
to other relationships between speed and occupancy, but the focus of the present work is on the direction of causality
between occupancy and speed rather than on the particular form of the relationship.

3. Traffic data

3.1. Introduction

The data used for the present investigation are derived from the MIDAS system (Highways Agency, 1994) and the asso-
ciated Halogen data logging systems. They represent measurements made between junctions 10 and 16 on the 188 km M25
London Orbital Motorway in England. In this section, the road has four running lanes in each direction and carries up to
85,000 vehicles per day in each direction. The running lanes are numbered consecutively from 1 at the nearside (shoulder)
to 4 at the offside (median). The rules of the road include that overtaking vehicles should pass to the offside of those being
overtaken, and vehicles should return to the available lane that is furthest to the nearside as soon as safely possible (Depart-
ment for Transport, 2007). Under most circumstances, heavy goods vehicles and those drawing trailers are prohibited from
using the most offside lane of a motorway (i.e. lane 4 in the present case).

Under normal operating conditions, the national speed limit of 70 mph applies. However, mandatory speed limits can be
imposed on this section of the M25 motorway at each of the reduced values of 60 mph and 50 mph in order to manage traffic
flow under busy conditions, and the value of 40 mph can be used to slow traffic in advance of its approach to queues: these
reduced speed limits are enforced by radar speed detectors supported by automatic cameras.

The MIDAS system has arrays of detectors spaced at approximately 500 m intervals along the carriageway, with a sepa-
rate detector in each lane. This system records data that are aggregated over 1 minute intervals, each record containing:

flow the number of vehicles crossing the detector during that minute,
speed the mean speed in km/h of vehicles crossing the detector, and
occupancy the proportion of time that the detector is occupied.

The data used in the present analysis represent all of the available records for Wednesday 1 May 2002, at location code
4757 on the clockwise (A) carriageway. Analysis of corresponding data from the same site on Wednesday 15 May 2002, and
from another site 4747 between the same junctions on Wednesday 1 May 2002 were found to yield similar results to those
reported here and support identical findings.



Table 1
Number of observations available for analysis.

Speed limit (mph) Lane

1 2 3 4

70 1015 893 733 541
60 18 18 18 18
50 97 97 97 97
40 239 239 240 241
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The distribution of observations available for analysis is reported in Table 1. There were over 1000 min of the day during
which the speed limit defaulted to the national one of 70 mph. By contrast, only 18 min of data were available for the 60 mph
speed control condition. The number of available observations in each controls state varied substantially among lanes in the
case of the 70 mph speed limit, with about half the number available in lane 4 compared with lane 1: this arises because in
light traffic conditions such as occur late at night, the high availability of low numbered lanes leads to lane 4 being empty for
extended periods of time.

Preliminary analysis of the data showed that the relationship between speed and occupancy was in all cases non-linear,
and follows a trend that has positive curvature. A typical example is given in Fig. 1, which shows all observations of occu-
pancy and speed made in lane 1 and the clearly non-linear trendal relationship between them. In view of this, only the non-
linear models given by Underwood (13) (fitted line in Fig. 1) and Edie, as described in Section 2.4, were investigated further.
Comparison of the results of fitting a single model to data from all four lanes taken together with corresponding ones from
four separate models, one for each lane, showed that there is a substantial difference among the relationships for the differ-
ent lanes. In light of this, all models were developed separately for traffic in each of the four lanes of the motorway.
4. Analysis and results

4.1. Introduction

We now consider the application of the analytic techniques described in Section 2 to the data introduced in Section 3. The
approach to this that we pursue is that of generalised linear statistical modelling (see, for example, McCullagh and Nelder,
1989). This provides objective criteria for selection between model forms, and within each form for the specification and
parameter values. The preferred traffic model can then be used together with the parameter values that are estimated for
it to describe traffic properties such as capacity in various different circumstances.

According to the generalised linear modelling approach, the dependent variable that is being investigated is considered to
be causally dependent upon a set of other variables (the explanators), with expected value calculated as a monotonic function
(the inverse of the link function) of a linear combination of their values. Once the link function and statistical distribution of
the error have been decided, values for the coefficients associated with each of the explanators can be calculated so as to
maximise the likelihood of the model given the observations.

On the basis of the preliminary investigations, the values for the parameters of each model were taken to differ between
lanes and so were fitted separately. We now address in turn the choice of model form for the speed–occupancy function, the
effect of speed control status on the parameters of the functions, and the matter of causality in the modelling. Once each
model had been refined so far as possible, the resulting forms were compared with each other according to the value of
the maximised likelihood that was achieved so as to determine which can be justified on the basis of the data.

4.2. Choice of model form

The first step in modelling was to investigate the choice of model form as between Underwood’s form (13) and Edie’s
form, which differs in that the high occupancy region is modelled using Greenberg’s form (15). These two models have
the same form at low occupancy, and have finite free-flow speeds m0. The present investigation focuses on the high occu-
pancy region as this is of greatest interest in management of busy roads and hence for speed control.

According to the generalised linear model framework, Underwood’s model (13) can be expressed in the log-linear form as
mi ¼ expðaþ bxiÞ þ ei; ð17Þ
where m0 = exp(a) and xm = �b�1. When the log-normal distribution is postulated for the error term e, this model can be fit-
ted conveniently in the form
logeðmiÞ ¼ aþ bxi þ ni; ð18Þ
where n has the normal distribution Nor(0, r2) : in this form, the model can be fitted by ordinary least squares regression to
minimise r2.
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In the subdomain within which it applies in Edie’s model, Greenberg’s model (15) can be estimated by fitting observed
values of m to the logarithm of x according to the regression
Table 2
Log-like

Lane

1
2
3
4
Tota
All

Table 3
Log-like

Lane

1
2
3
4
Tota
All
mi ¼ aþ blogeðxiÞ þ ei ðxm < xiÞ ð19Þ
In this case, the fitted parameters can be interpreted as m0 = �b and xj = exp(�a/b). In view of the form of this model, val-
ues for the parameters were estimated so as to maximise their likelihood using a purpose-specific optimiser applied to the
joint likelihood calculated according to the log-normal distribution for the error term e.

Values of the maximised log-likelihoods of the Underwood models for each lane, calculated according to the log-normal
distribution (8) are given in Table 2. These are presented for 4 model variants in which the degree of specialisation of the
model to the speed control increases progressively; in each case the mean is estimated using two parameters in Eq. (18)
whilst the variance is estimated as a separate parameter. The first column of results is for a single model (with two param-
eters for the mean and one for the variance) fitted to all of the data. The second column of results is for two separate 3-
parameter models, one fitted to each of the groups of data corresponding to no control (denoted as {70}) and control of some
kind (denoted as {60, 50, 40}). The third column distinguishes further between the cases of control for speed management
(denoted as {60, 50}) and queue protection control (denoted as {40}). Finally, the last column has a separate model for each
speed control state.

The last row of Table 2 shows the values of the maximised log-likelihood for each of these models when traffic is mod-
elled in all lanes together. The increase in log-likelihood when separate models are used for each lane is greater than 700 for
each level of distinction in speeds giving likelihood ratio test values (11) in excess of 1400; by comparison, the critical value
of the test statistics according to the likelihood ratio test at the 0.05 level of significance with 9 degrees of freedom is 16.9.
We therefore find that a separate model is required for each of the 4 lanes of traffic.

The corresponding results for the Edie model are given in Table 3. This model differs from the Underwood model at high
occupancy by adopting the logarithmic relationship of Eq. (15) in place of the exponential relationship of Eq. (13). This model
therefore has an intrinsic jam occupancy that will cause traffic to stop. In this case, the improvement in log-likelihood asso-
ciated with use of separate models for each lane is greater than 500 for each combination of speed control categories giving
likelihood ratio test statistics (11) in excess of 1000, which is sufficient to justify the use of the additional 9 model param-
eters. Because of the smoothness conditions at the spline point x = xj/e between the two parts of the relationship, the Edie
model is determined by the same number of parameters as the corresponding Underwood one.

Comparison of the likelihood values in Tables 2 and 3 for these two models shows that for each combination of lane and
speed group, the Underwood model has the greater likelihood value. The difference in values is most pronounced when no
allowance is made for variations speed limits, but exceeds 140 in all cases. From this, we find that the Underwood model
provides a better description of the present M25 dataset than does the Edie model. This shows that in the high occupancy
region x > xm, Underwood’s exponential relationship (13), which has no jam occupancy, provides a description of the data
that is preferable to Greenberg’s logarithmic relationship (15), which does have an explicit jam occupancy. Based on the
empirical preference for Edie’s model over Underwood’s, we can draw a series of conclusions. First, even at the highest occu-
pancies recorded, traffic can be expected to flow. In light of this, we conclude that jam occupancy arises as the occupancy
lihood values for fitted Underwood models.

Model formulation (speed groups, mph)

{70, 60, 50, 40} {70}, {60, 50, 40} {70}, {60, 50}, {40} {70}, {60}, {50}, {40}

633.74 775.09 838.23 841.92
507.29 617.23 725.68 731.62
305.69 529.16 628.68 638.57
132.07 292.13 388.79 399.28

l 1578.79 2213.61 2581.38 2611.39
867.55 1286.04 1527.15 1537.29

lihood values for fitted Edie models.

Model formulation (speed groups)

{70, 60, 50, 40} {70}, {60, 50, 40} {70}, {60, 50}, {40} {70}, {60}, {50}, {40}

186.67 344.74 505.58 506.56
95.16 288.76 534.37 536.36

�174.39 119.49 391.21 394.51
�243.45 21.81 241.03 246.34

l �136.01 774.80 1672.19 1683.77
�722.37 131.97 918.63 926.42



Table 4
Estimates of capacity q� for of each lane from Underwood’s model (13).

Lane m0 (km/h) xm L (m) q� = m0 xm/e L (vehicles/h)

1 116.60 0.2606 10.93 1022.6
2 133.52 0.2234 7.58 1448.4
3 154.71 0.2114 6.32 1903.8
4 160.49 0.2910 6.21 2765.0
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that is attained by traffic when the speed is forced to be zero by some blockage, and that occupancy this high will not in itself
cause traffic to halt. This in turn supports the idea that in circumstances when the speed of traffic is controlled, traffic will
adopt that speed and assume an occupancy according to that speed.

The estimates of fitted parameters for Underwood’s model (13) for each lane, corresponding to all observations for that
lane, are given in Table 4 together with the associated estimates of capacity q� for that lane according to the formula
q� = m0xm/eL for this model. The values for the mean effective vehicle length L in each lane given in this table were calculated
in Heydecker and Addison (2008). This shows increasing estimates of free-flow speed and apart from lane 4 decreasing esti-
mates of occupancy at capacity xm for increasing lane number. Together with the estimates of mean effective vehicle length,
they lead to increasing estimates of capacity, as measured in vehicles per unit time, with increasing lane number.

4.3. Effect of speed control

We now consider the effect of speed control on the speed–occupancy relationship that is fitted to the data. In light of the
preference for Underwood’s speed–occupancy relationship that is established in Section 4.2, we focus on Table 2, which
shows the results for that model. The log-likelihoods that result from fitting Underwood’s model (13) that are given in Table 2
show that for each lane, the most substantial improvement in log-likelihood occurred when a separate model was fitted to
data from conditions when speed was limited to one or other of the values 60, 50 or 40 mph as opposed to having the na-
tional value of 70 mph. For each lane, the improvement in log-likelihood associated with this refinement of the model ranged
from a little over 30 in the case of distinction between 60 mph and 50 mph, to more than 600 for the separation of the na-
tional speed limit case from the speed restricted cases. Although not central to development of the argument, we note that
the improvements in fit of Edie’s model are similar in pattern and magnitude. Even the smallest of these improvements is
sufficient to justify the associated model refinement that introduces 3 further parameters, for which the critical improve-
ment in log-likelihood according to the likelihood ratio test (11) is 3.91 (=7.82/2).

4.4. Causality and the direction of influence

We now turn to the implications of the choice of Underwood’s exponential model (13) in preference to one that has an
explicit jam occupancy, and consider them in combination with the observation that the greatest improvement in model fit
was achieved with the distinction between national and controlled speed operation of the motorway. The argument associ-
ated with the nature of jam occupancy and the occurrence of 0 speed in Underwood’s model shows that in this case at least,
speed is determined exogenously because it cannot result from high occupancy. Consideration of the improvements in log-
likelihood associated with separation of the various different speed control categories shows that the greatest improvement
in model fit occurred when the speed-controlled cases (60, 50 and 40 mph speed limits) were treated separately from the
national speed limit of 70 mph. We therefore investigate for the speed-controlled cases estimation of the inverse Underwood
model
x ¼ gðmÞ ¼ xm loge
m0

v

� �
; ð20Þ
which treats speed m as the explanatory variable. This is fitted by minimising with respect to the parameters (m0, xm) the sum
of squares of the difference between observed and estimated values in (20). The fitted model was evaluated according to the
log-likelihood of the log-normal distribution (8).

The results of estimating this model for all data in lane 1 is shown in Fig. 2 on the scale of occupancy against logarithm of
speed. This shows good agreement with the trend between occupancy and speed, though we note that the dispersion around
the model estimate is greater at lower speeds than at higher ones. Comparisons between estimation of a single model for all
data against separate estimation for the cases of national speed limit (70 mph) and all controlled speeds (60, 50 and 40 mph)
taken together are given in Table 5. The likelihood ratio test statistics, which are all substantial, show that the distinction
between national speed limit and the controlled states is fully justified. The smallest of these values, 37.18 for lane 1, is
greatly in excess of the critical value at the 5% level of significance on 3 degrees of freedom of 7.82, whilst each of the values
for the other lanes is greater than 400. The standard errors of estimation sx in the range 0.019–0.07 show that this model
achieves a reasonably good fit to the observed occupancy x, as can be seen in Fig. 2.

Both of the usual and the inverse Underwood models between speed and occupancy, with results presented in Tables 2
and 5 respectively, support use of separate models for the cases of national speed limit (70 mph) and controlled speeds.
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Fig. 2. Inverse Underwood model fitted to all data for lane 1.

Table 5
Comparison of inverse Underwood models for all flows.

Lane Speed group m0 (km/h) xm Standard error sx Log-likelihood Likelihood ratio k (2 df)

1 All 121.71 0.2636 0.0422 �871.88 37.18
70 mph 120.00 0.2707 0.0265 �879.27
Control 130.71 0.2523 0.0690 25.98

2 All 139.09 0.2405 0.0403 �954.79 603.16
70 mph 128.36 0.3360 0.0226 �768.72
Control 163.03 0.2194 0.0633 115.51

3 All 163.47 0.2048 0.0391 �852.83 737.08
70 mph 138.48 0.4506 0.0191 �616.29
Control 157.07 0.2082 0.0576 132

4 All 172.58 0.1910 0.0420 �590.48 492.82
70 mph 143.89 0.4540 0.0196 �329.06
Control 167.76 0.1932 0.0584 �15.01
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Argument concerning traffic behaviour at low density and hence low detector occupancy supports use of the usual Under-
wood model (13) to estimate speed from occupancy when the national speed limit applies, whereas corresponding argument
supports use of the inverse Underwood model (20) for speed controlled conditions.

We therefore investigated further use of the inverse Underwood model (20) by considering data only from controlled
speeds. The results of this are given in Table 6, which shows the likelihood ratios for the test of separate models for each
speed within the controlled range against a single model for all controlled speeds. The likelihood ratio test statistics all ex-
ceed 20, compared to the critical value at the 5% level of significance on 6 degrees of freedom, which is 12.6 : we therefore
find that further distinction between models according to the controlled speed is justified. The results of estimating the in-
verse Underwood model for data observed in lane 4 under 40 mph speed limit control is shown in Fig. 3 on the scale of occu-
pancy against logarithm of speed. This shows good agreement with the trend between occupancy and speed, though we note
that the dispersion around the model estimate, which is accommodated where this occurs between speed control cases, re-
mains greater at lower speeds within the 40 mph control regime than at higher ones.

The fitted values of the parameters for the inverse Underwood model for the speed controlled conditions are shown in
Table 7, together with the maximum modelled value of flow at an occupancy that was observed for each one. For each lane,
the maximum flow under 60 mph speed control occurred at the greatest observed occupancy; under other speed controls, it
occurred at an occupancy within the range observed. In lanes 1 and 2, the greatest flow occurred under speed controls of
50 mph, whilst in lanes 3 and 4 it occurred under speed control of 60 mph. The estimates of maximum flow for lanes 1–3



Table 6
Comparison of inverse Underwood models for speed–controlled flows.

Lane Speed (mph) m0 (km/h) xm Log-likelihood Likelihood ratio k (4 df)

1 Controlled 130.71 0.2523 25.98 23.8
60 111.44 0.3950 �7.19
50 127.60 0.2768 16.2
40 126.16 0.2566 28.87

2 Controlled 163.03 0.2194 115.51 49.46
60 110.87 0.6282 0.35
50 177.56 0.2169 37.95
40 145.99 0.2307 101.94

3 Controlled 157.07 0.2082 132 30.98
60 123.83 0.4771 �4.41
50 179.50 0.1923 57.49
40 138.83 0.2212 94.41

4 Controlled 167.76 0.1932 �15.01 182.96
60 121.34 0.5599 �8.3
50 153.02 0.2339 14.57
40 151.21 0.2022 70.2

0

20

40

60

80

100

0 1 2 3 4 5

O
cc

up
an

cy
 (%

)

log(speed)(log(kph))

Lane 4: Inverse Underwood Fitted Data M25/4757A May 1 2002

40

Fig. 3. Inverse Underwood model fitted to data for lane 4 under 40 mph speed control.
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exceed those from the usual Underwood model applied to all speed limits that are shown in Table 4, though it is slightly less
for lane 4. The estimated values of maximum flow are lower, and more realistic, in each lane where the different speed con-
trol levels are modelled separately. This indicates that different relationships apply under each level of speed control and
hence emphasises the importance of modelling traffic separate under each of them.
5. Discussion and conclusions

The work reported in this paper considers the relationship between speed and occupancy on motorway roads, and the
way in which this is influenced by speed controls. Understanding and modelling this is important in developing and refining
traffic management measures. Analysis of observations of speed and occupancy in each of the 4 lanes of the M25 motorway
shows that the relationship between them differs significantly from lane to lanes, so that each lane should be modelled
separately.



Table 7
Estimates of capacity q� for of each lane from the inverse Underwood model in controlled speeds.

Lane Speed (mph) m0 (km/h) xm L (m) Maximum flow at observed occupancy (vehicles/h) Speed at maximum flow (km/h)

1 Controlled 111.44 0.3950 8.24 1965.12 48.09
60 127.90 0.2468 10.61 821.53 84.00
50 115.18 0.3274 7.91 1753.82 46.94
40 151.99 0.2168 9.02 1343.92 46.41

2 Controlled 110.87 0.6282 8.75 2927.46 59.98
60 127.05 0.3786 8.83 1490.02 84.00
50 161.04 0.2380 8.68 1624.41 65.32
40 163.52 0.2131 9.40 1363.74 53.71

3 Controlled 123.83 0.4771 6.82 3189.08 57.78
60 133.73 0.3735 6.57 2363.85 79.00
50 164.92 0.2214 6.57 2044.52 66.03
40 176.05 0.1849 7.20 1663.21 51.07

4 Controlled 121.34 0.5599 6.48 3858.43 61.72
60 135.73 0.3856 6.19 2663.62 79.00
50 162.25 0.2242 6.30 2124.15 56.29
40 159.61 0.1991 6.80 1719.21 55.63
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Investigation of the form of this relationship shows support for use of Underwood’s exponential relationship, which does
not have a jam density. This suggests that even at the highest densities recorded, traffic could continue flow. In light of this,
we conclude that jam density arises as the density attained by traffic when the speed is forced to be zero by some blockage,
and that density this high will not in itself cause traffic to halt. This supports the idea that in some circumstances when the
speed is controlled, traffic will assume a density according to that speed.

A consequence of the adoption of Underwood’s relationship between speed and occupancy is that the fundamental rela-
tionship between flow and occupancy has positive curvature at occupancy values that are more than twice that at which
flow is maximised. This positive curvature leads to the possibility of transitions from low speed and high density to higher
speed and lower densities that are stable rather than dispersive. Stable start waves of this kind are observed in practice: to-
gether with ordinary shock waves (transitions from low density to high) that have similar speed they form persistent regions
of high density that travel upstream along the road in the form of stop–start waves. This then provides a basis for modelling
stop–go traffic conditions that are commonly found on congested motorway roads.

Statistical estimation of Underwood’s model relationship between speed and occupancy using observations separately in
each lane showed that different relationships obtain according to the speed control status. Thus we find that driver behav-
iour, and hence traffic performance, varies according to this control status.

Drawing on these findings, we conclude that use of a relationship in which speed is the explanatory variable upon which
occupancy and flow are taken to depend is justified when traffic is subject to speed control. This prompts the development of
a modelling approach in which the form and directions of influence as well as the parameters of the relationships differ
according to the speed control status of the road. The lines of argument that are established in the present paper and hence
the resulting modelling approach are independent of the road location and functional forms, and so will have general
applicability.

Estimation of the capacity in vehicles per unit time of each of the lanes of the road using occupancy data depends upon
the mean effective length of vehicles at the detectors, which is known to differ between combinations of lane and speed con-
trol state. Use of appropriate values together with the estimated models of speed, flow and occupancy leads to estimates of
capacity of each lane in different control states. According to this, the estimated capacity of each of lanes 1–3 increases when
speed control is introduced, with the greatest values that were supported by the data occurring when the control speed is
50–60 mph depending on the lane. This increase in capacity can lead to reduced congestion and hence reduced travel times.
The present modelling approach therefore provides a description of how imposing a reduced speed limit can induce greater
road occupancy and hence increase flow on motorway roads.

The results of this research relate to the flow of traffic on busy motorway roads in three distinct ways. These are the inher-
ent nature of traffic flow in these conditions, the way in which models for this can be formulated and used, and consequent
findings for management of this traffic. Whilst these findings are based upon analysis of traffic on the controlled section of
the M25 motorway in England, their nature informs issues of traffic modelling in support of development of traffic manage-
ment in general.
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