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Abstract. This research investigates freeway-flow impacts of different traveler types by speci-
fying and applying a latent-segmentation model of congested and uncongested driving behaviors.
Drivers in uncongested conditions are assumed to drive at self-chosen speeds, while drivers in
congested conditions are assumed to take speed as given and choose a spacing (between their
vehicle and the previous vehicle). Several classes of driver-vehicle combinations are distinguished
in a data set based on double-loop-detector pulses and a household travel survey. These classi-
fications are made on the basis of vehicle type and gender, leading to class estimates of speeds
and spacings. The segmentation model is specified as a logit function of density, weather, and
vehicle type, leading to estimates of congested-condition probabilities. Unobserved heterogeneity
is incorporated in all models via common error assumptions.

Results indicate that segmentation models are promising tools for traffic data analysis and
that information on travelers, their vehicles, and weather conditions explains significant varia-
tion in flow data. By clarifying a greater understanding of traffic conditions and traveler behavior
much scatter in the fundamental relation between flow, speed, and density, can assist regions
in their traffic-management efforts and engineers in their design of roadway facilities. Ultimately,
such improvements to travel networks should enhance quality of life.

1.  Introduction and background

It is well accepted that distinct roadways accommodate different levels and
patterns of vehicular flow, by virtue of their design. Transportation engineers
in the United States rely on the Highway Capacity Manual (HCM 2000) to
estimate what constitutes capacity for a given roadway and what levels of
service are experienced by travelers under different traffic conditions. The
methods embodied by this manual depend primarily on a roadway’s physical
design; however, the fractions of heavy vehicles also explicitly enter the
equations. Traveler type has been incorporated as playing a vague role in
capacity and flow conditions: engineers are expected to choose a driver-
population adjustment factor between 0.85 and 1.0, depending on how “effi-
ciently” they expect drivers to use the roadway. Essentially, an engineer’s
guesswork can produce a fifteen-percent difference in flow estimates. Such
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differences can have serious repercussions in the design, cost, and operation
of roadways. They also substantially affect prediction of variables dependent
on traffic conditions, such as emissions, route choices, and network opti-
mization strategies.

The HCM suggests speed-flow curves for freeways with ideal geometries
and zero heavy vehicles under “free-flow conditions.” Given the trivariate
relation for stationary traffic (flow equals space-mean speed times density (Edie
1965)), these imply speed-density and flow-density curves under free-flow con-
ditions. Traffic researchers have long been interested in functionally specifying
and estimating these relations (e.g. Greenshield 1935; Drake et al. 1967;
Ceder 1976), but without much behavioral and/or statistical sophistication.
Greenshield’s (1935) data suggested a linear speed-density relation for free-
flow and forced-flow conditions, leading him to propose a parabolic function
as an approximation to the flow-density relation. Other functional forms, based
on notions like fluid dynamics and car-following decisions, give rise to a
variety of forms. For example, Greenberg (1959) proposed a logarithmic
form for speed versus density, Underwood (1961) used an exponential form,
and Edie (1961) combined these two to accommodate a clear discontinuity
in data near critical densities. Segmentation of congested and uncongested data
points is performed exogenously (based on the best guess of the researcher),
and estimation relies on ordinary least squares methods.

More recent research has focused on the discontinuities observed across
near-capacity data points (e.g. Ceder & May 1976; Payne 1984; Banks 1989;
Hall et al. 1986, 1992; Cassidy 1998). With few exceptions, flow-density-speed
models assume a single relation for all travelers, neglecting driver character-
istics, vehicle type, and environmental conditions (such as weather). The
exceptions include Krauss (1998), who simulates random driver behaviors to
investigate traffic variability, and Kockelman (1998), who interacts informa-
tion on travelers, weather, and vehicle type with density for a least-squares
polynomial model of flow. Notably missing from the literature is a model
with a strong behavioral basis, convincing stochastic assumptions, and an
empirical application.

The work described here improves upon prior models and methods by
developing flow-density relations in ways that are fundamentally consistent
with behavior and by introducing greater statistical sophistication. The func-
tional forms are derived from free-flow-speed and minimum-spacing choices
by distinct driver and vehicle types. The statistical specification is a mixture
model of congested and uncongested conditions. The model application is illus-
trated using a pair of San Francisco Bay Area data sets.
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2.  Model specification

The model specification relies on two behavioral hypotheses: one for “uncon-
gested,” unforced, or “free-flow” traffic conditions; the other for “congested”
conditions.1 The two models are linked by an latent-segmentation model, which
recognizes the unobserved character of the traffic regime (uncongested versus
congested).

In contrast to the model specifications used here, the HCM illustrates speed-
flow relations only for ideal, “uncongested” conditions and provides no
parametric specifications. By parameterizing the relations and using appro-
priate data sets, one can regress flow on various explanatory factors (including,
for example, mix of driver types, weather conditions, and vehicle sizes) to
examine which qualities are responsible for variation in observed traffic flows
– and to what degree.

To devise a realistic parametric structure, however, one must have a strong
behavioral model. Under uncongested conditions, freeway traffic data suggest
that speeds are relatively constant and chosen by the drivers. Figure 1 shows
flow-versus-density data under congested and uncongested conditions for
the second of five northbound lanes on Interstate 80 in Hayward, California.
Under stationary conditions, the ratio of flow to density is space-mean speed,
and this appears to be nearly constant for the uncongested regime. Thus,
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these data – as with uncongested data presented elsewhere (e.g. Drake et al.
1967; Ceder & May 1976; Koshi et al. 1983; Banks 1989) – are consistent
with a constant-speed hypothesis. Figure 1 also suggests possible flow-density
relations for aggressive and non-aggressive driver types; a mix of such
drivers on the road would lead to observed behaviors lying between these
functions.

If each class of driver drives at its desired, “free-flow” speed, the observed
uncongested flow-density relationship is a weighted average of the desired
speeds. Assuming such behavior, a regression of flow on total density inter-
acted with proportions of distinct driver/vehicle classes “i” yields estimates
of free-flow speeds for these classes. Equation 1 illustrates this relation.

Under Uncongested Conditions:

qU = ∑ vfree,ipik = Total, uncongested flow, (1)
i

where vfree,i = Free·flow speed for driver/vehicle class “i”, pik = Density of
driver/vehicle class “i” per unit length of roadway, and pi = Proportion of roads’
vehicles of driver/vehicle class “i”.

Under congested conditions, the driving situation is very different: speeds
are no longer constant for rising densities, and drivers can no longer choose
their free-flow speeds. Instead, each class of driver is able to control the
spacing at which it follows the preceding traveler. One behavioral assump-
tion is that a class’s selected spacing is a linear function of speed. Scatterplots
of the inverse of density (the average spacing between vehicles) versus speed
using the data illustrated in Figure 1 and elsewhere (e.g. Daganzo 1997) suggest
that such an assumption is very reasonable for the congested regime. This
implies the following: si = ai + biv, where si stands for inter-vehicle spacing
(front-to-front) of the ith class, v is space-mean speed, and ai and bi are con-
stants defining the ith class’s behavior.2 Since total vehicle density is the inverse
of average spacing of vehicles on the roadway and average spacing is a pro-
portion-weighted sum of class densities, one can solve for total density as a
function of speed. Notationally:

Since flow is simply the interaction of density and space-mean speed (under
stationary traffic conditions), these assumptions result in a non-linear func-
tional form for congested flow versus speed and a linear form for congested
flow versus density. The linear (and negatively sloped) form is consistent
with much data and theory (e.g. the “inverted lambda” hypothesis of Ceder
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and May (1976); Koshi et al. (1983); Payne (1984), and others). Both forms,
however, are non-linear in class proportions (pi) and the unknown behavioral
parameters (ai and bi). These results are illustrated by Equation 2. 

Under Congested Conditions:

In comparing Equations 1 and 2, the clear contrast in hypothesized behavior
and, therefore, functional form under uncongested and congested states effec-
tively implies two distinct regression models. Unfortunately, many data points
are not clearly in one or the other; they straddle both regimes. To resolve
the resulting estimation issues, a latent segmentation model across the two
regimes is very helpful (see, e.g. Maddala 1983; Bhat 1997). A logit-type
segmentation model (Equation 3) was used to probabilistically estimate obser-
vation membership in the two regimes, and an iterative search was conducted
for the likelihood-maximizing estimators (Equation 4).

Since there is unobserved heterogeneity among travelers within classes
and traffic conditions, the uncongested and congested flow predictions involve
error terms. In recognition of this, observed flows are assumed to be distrib-
uted around behavioral means with iid normal error components, producing
the following likelihood for any observation n:

where φ = standard normal density function.
Note that Equation 4’s likelihood is conditioned on density (k) for uncon-

gested-traffic estimates and speed (v) for congested-traffic estimates. This
non-standard set-up is a result of the behavioral assumptions. In reality,
the causal structure is not necessarily one-way. For example, downstream
bottlenecking typically governs congested flows upstream; spacings (or den-
sities) and speeds then develop simultaneously on the roadway.
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3.  Data sets and estimation

Estimation of unknown parameters in the two traffic regimes (a’s, b’s, and
vfree’s) and in the segmentation model (β’s) was performed after merging
three data sets. The data come from the San Francisco Bay Area in the early
1990s. The first consists of 30-second traffic data (including counts, densi-
ties, speeds, and vehicle lengths) gathered on a Thursday and a Friday in
February 1993. These were collected by paired loop detectors embedded in the
second inside lane of a five-lane northbound section of Interstate 880, in
Hayward, California.3

The detector data were linked – by time of day (using fifteen-minute time-
weighted averages) – to driver information in the 1990 Bay Area Travel
Survey’s (BATS) trip data. The BATS data do not include chosen route (or
lane) information, so it is impossible to identify which of the surveyed drivers
actually passed the detectors during the period of interest. Instead, it is assumed
that all relatively long automobile trips (i.e. those at least 2.5 Euclidean
miles) are candidates for the detector station studied, and the data averages
on driver characteristics come from these subsets of drivers. While these
averages may differ greatly from the values of drivers crossing this partic-
ular detector station at any given moment, they permit an empirical illustration
of the model specification.

The third data set is rainfall data from the National Oceanic and Atmospheric
Administration (NOAA 1993). These indicated the Thursday to be dry and
the Friday to be wet, so the Friday data may have a higher likelihood of con-
gested conditions (as captured by the rainfall variable in the segmentation
model). All variables are described in Table 1.

4.  Results

The results of the estimation were produced using GAUSS’s maximum like-
lihood procedure (Aptech 1999) and are shown in Table 2. Models of increasing
complexity are illustrated, and the variation falls significantly when introducing
classification of driver types in the uncongested regime (Model 2) and when
adding explanatory information to the segmentation model (Model 4). On
average, it appears that truck drivers and females choose higher free-flow
speeds than males (roughly 64 mph vs. 59 mph) and shorter minimum spacings
(averaging about 20 feet vs. 34+ feet), suggesting more aggressive behav-
iors. However, the results also indicate that males maintain tighter spacing
under congested conditions when speeds increase, exhibiting more aggres-
sive behaviors in the 10 mph to 60 mph range. While the levels of almost
all shown parameter estimates are consistent with expectations, the models
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do not control for several important variables (such as driver age and expe-
rience), and they rely on a highly indirect pairing of data sets.

The 1990 travel surveys are taken from tens of thousands of households
across the region, while the 1993 detector data involve only vehicles in a single
lane on a particular section of roadway on specific days. Thus, the travel survey
proportions of male and female drivers are gross proxies for the loop-detected
population. Upon further disaggregation of the data (by age, as well as gender
and truck proportions) many of the resulting estimates were not as intuitive;
this is probably due to the error in measurement from coupling diverse data
sets, and it may also be due to correlations in traveler characteristics and the
congested times of day on this particular roadway.

Since much error arguably arises from measurement error in class propor-
tions, parameter results are expected to be biased. In the case of a standard
OLS model, these estimates would be biased toward zero (Greene 1993).
However, in the non-linear models applied here (particularly for model
switching and behavior under congested conditions), biases actually can exag-
gerate – rather than attenuate – parameter values. The exact nature of biases
depends on functional form and joint distribution of variables; in general,
however, measurement biases in nonlinear models tend to have an attenu-
ating effect (Carroll et al. 1995). It is difficult to know for certain, but Table
2’s estimates of differences across driver characteristics may actually be more
pronounced in a data set that is able to control for these without measure-
ment errors.
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Table 1.  Description of variables.

Dependent variable:
Flow (q) Count of vehicles in a 30-second interval (from detector data set)

Explanatory variables:
Density (k) Density computed for 30-second interval [vehicles per lane mile] (from detector

data set)
Speed (v) Space-mean speed of detected vehicles (via harmonic averaging of spot speeds)

[mph] (from detector data set)
Male Fraction of drivers in trip sample who are male (from BATS data set)
Female Fraction of drivers in trip sample who are female (from BATS data set)
Truck Fraction of counted vehicles with length > 20 feet (in 30-second interval)

(from detector data)
Rain Indicator variable for rain falling in the vicinity during the hour (from NOAA

data set)
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5.  Extensions to this work

This work can be furthered through data improvements, more flexible
stochastic assumptions, and different behavioral assumptions. This work’s
coupling of distinct data sets permits illustration of the methodology; however,
without a data set that correctly couples actual driver characteristics with loop-
detected information, the estimated coefficients may be biased (typically
towards zero, though not always (Carroll et al. 1995)), and behavioral impli-
cations may not be valid. Unfortunately, it is expensive to collect the data
needed for this enhanced resolution. However, supplementation of the data
set with a smaller sample of observations measured without any error would
permit significant bias correction via regression calibration/variable instru-
mentation (see, e.g. Carroll et al. 1995).

In terms of stochastic flexibility, modelers may desire non-negative, integer
flow estimates and heteroskedasticity within each of the two behavioral models;
such an extension may be realized using a negative binomial regression model,
where average rates are as illustrated in Equations 1 and 2. Additionally,
there may be correlation in unobserved information across the three model
segments (engendering simultaneity and, as referred to in Maddala 1983,
“endogenous switching”); for example, a line of trucks in an adjacent lane may
be unobserved but would increase the probability of congested behavior and
reduce expected flows under either behavioral model.

The assumption of independent error terms in the two behavioral models
is not consistent with serial, loop-detector data in the presence of lagged,
random effects. This is a difficult problem to address. Albert and Chibb (1993)
have applied Bayesian methods to test a Markov process model for two latent
states, in order to recognize a shift in financial data. However, their discus-
sion only addressed a single, auto-regressive model specification (where the
shift term was simply an added constant) and their Markov process was not
a parametric function of other variables. In the work described here, the two
forms of behavior linked via the latent switching model would add consider-
able complexity to Albert and Chibb’s approach.

It is likely that more flexible stochastic specifications would require much
more demanding estimation techniques, such as set generation, simulated
likelihood or integral approximation. For example, inclusion of auto-regres-
sive normally-distributed dependencies of the first degree in each of the
behavioral models entails the following:
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(where i denotes uncongested or congested).

To apply Equation 5’s set-up with just 500 data points (rather than the
2621 used here), one would need to generate on the order of 2.6E120 com-
binations – and thus probabilities – for the set. This level of computation is
not currently practical for most modelers, but it is feasible.

Behavioral modifications to the model presented here appear more practical
in the near term. Additional traffic regimes – for example, “transition” regimes
between congested and uncongested conditions and/or non-stationary-traffic
behaviors – may be incorporated via a multinomial segmentation model. And
incorporation of less linear behavior (in free-flow-speed and spacing choices)
may prove more realistic, particularly on lower-level facilities where flow-
density curves may exhibit more curvature.

6.  Conclusions

This work illustrates the methodology and value of latent traffic-regime seg-
mentation and driver-class identification for purposes of modeling traffic flows.
Recognition of traveler characteristics permits assessment of the impacts that
different traveler types have on traffic conditions. Here the development of
flow-density-speed relations from plausible behavioral bases under congested
and uncongested conditions and the allowance for latent segmentation reveal
several traffic behaviors of interest; they also facilitate more reliable traffic
prediction and improved roadway design. The empirical results suggest that
significant differences in free-flow and car-following behavior exist across
traveler classes.

Ultimately, the methods illustrated here permit researchers to examine
such questions as the effects of an aging driver population on the capacity
of our nation’s roadways and to what extent more experienced drivers and/or
smaller vehicles offset these. Such work also supports modifications to the
Highway Capacity Manual, changes in roadway design, and greater realism
in traffic simulation. Model improvements like these are expected to produce
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more reliable estimates of roadway use and traveler behavior, allowing engi-
neers and planners to better accommodate present and future demands on
transportation facilities through more optimal design. Ultimately, improvements
to travel networks are expected to enhance quality of life.
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Notes

1. These definitions of “uncongested” and “congested” differ from those used by some
researchers, who label “congested” those conditions under which addition of traffic produces
reductions in speed.

2. At jam densities, speed is zero, so ai can be thought of as the inverse of jam density and
may be expected to be about 20 feet per vehicle. (Note: The average length of light-duty
vehicles sold in 1997 is about 17 feet (Wards 1998).) As speed increases – but traffic
remains forced/congested, one may expect a spacing increase of one vehicle’s length for every
10 mph increase in speed (a rule of thumb often given to new drivers); such behavior results
in a bi value of roughly 17 feet/10 mph. These values are very similar to the results esti-
mated and shown in Table 2.

3. The inside lane was designated as a high-occupancy lane during rush hours, so its data
were not chosen. The nearest ramp is 0.23 miles downstream from recording detectors, so
merging movements are not expected to be significant in this second of five lanes.
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