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Abstract—In this paper, two different control-oriented model-
ing strategies are presented for the dynamics of a combustion
engine-based power train. The first modeling approach corre-
sponds to a so-called inverse model relating a given drive cycle
to the mass flow of fuel and to the total fuel consumption.
The alternative modeling approach represents a direct system
description in which the fuel mass flow serves as the system
input, while the resulting vehicle acceleration and velocity are
the corresponding output variables. These models are employed
for the optimization of operating strategies with respect to the
fuel consumption and for the design of observer-based feedback
controllers which are validated by numerical simulations. These
controllers are designed in such a way as to allow for a real-time
implementation of a velocity control approach. The presented
system models as well as the corresponding optimization and
control strategies are the basis for an experimental implementa-
tion on a test rig that is currently being built up at the Chair of
Mechatronics at the University of Rostock.

I. INTRODUCTION

Internal combustion engines are an integral component of
most power train architectures for road and non-road vehi-
cles. For that reason, a control-oriented modeling approach
is presented in this paper. The modeling procedure can be
subdivided into an inverse model that describes the interaction
of the basic system components with the drive cycle as
the system input and the fuel consumption that is required
for its realization as the corresponding output. This type of
system model has been taken into consideration in numerous
related publications. Among these, especially the work of
Guzzella has to be mentioned [1], [2]. His research led to
the implementation of the MATLAB toolbox QSS [3] which
has partly influenced the model architecture presented in this
paper. The inverse modeling approach is characterized by
the fact that dynamic component models can be evaluated
algebraically. This holds as long as information concerning
gear shifts is provided as a system input along with velocity
and altitude profiles to characterize the vehicle’s speed and
operating conditions. From a system theoretic point of view,
the purely algebraic computability of the inverse system model
can be explained by the fact that the inverse model becomes
differentially flat [4] under the above-mentioned assumptions.

This inverse system model is the basis for a model-based
optimization of drive cycle parameters in the current paper.
In contrast to [1]–[3], the gear shift information, however,

is not provided as a system input. The gear shifts are rather
determined during the evaluation of the inverse system model.
This evaluation is based on a simplified dynamic gear box
model which allows one to optimize drive cycle parameters
and the angular velocities at which gear shifts have to be
performed to achieve minimal fuel consumption. However,
this extension leads to the drawback that the inverse model
can no longer be evaluated in a purely algebraic manner. The
optimization of drive cycle parameters is especially helpful for
systems operating on the basis of a-priori known timetables.
A typical example is the non-road application of combustion
engines in railway vehicles [5], [6].

In addition to the inverse model, a direct system formu-
lation is presented in this paper which contains exactly the
same building blocks, however, with interchanged inputs and
outputs. The direct model is employed for the derivation and
implementation of observer-based control strategies that can be
used in cruise control systems. In such applications, the fuel
mass flow provided to the combustion engine is interpreted
as the system input, while the vehicle’s acceleration and
velocity are the major output variables. Corresponding control
strategies are derived in this paper, which are based on a
reduced-order direct system model. The control procedures
are validated by numerical simulations with a full-scale direct
system model which reflects the system dynamics that are
implemented as in the above-mentioned inverse system repre-
sentation. Related research work, however, not using exactly
inverted models for both the inverse and direct system repre-
sentation can be found, e.g., in [7]–[9], where the advantage
of using both directions of information flow simultaneously
for optimization and control design are not exploited.

This paper is structured as follows. Section II gives an
overview of both the inverse and direct system models. In
addition, a conceptional design for a small-scale test rig is
described which is currently being built up at the Chair of
Mechatronics at the University of Rostock to validate oper-
ating strategies for combustion engine-driven and hybridized
power trains. Optimization approaches and numerical results
are presented in Section III with a focus on the minimization of
fuel consumption. In Section IV, observer-based cruise control
strategies are derived. The paper is concluded in Section V by
an outlook on future work.
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II. CONTROL-ORIENTED MODELING OF COMBUSTION
ENGINE-BASED POWER TRAINS

In this section, both inverse and direct system models
are derived for combustion engine-based power trains. As
mentioned in the introduction, the first can be employed to
quantify the effect of a predefined drive cycle on the fuel
consumption, while the latter is used to compute the resulting
drive cycle as the system output for a given fuel mass flow.
In both cases, the mathematical descriptions consist of five
components, representing the drive cycle, the vehicle, the
gear box, the combustion engine with a quasi-static fuel
consumption characteristic and a model for the fuel tank.
The interaction between the different components is shown
in Fig. 1. Here, the interface variables between the different
system components are chosen in such a way that they reflect
the power flow, for example, as a product of torque and angular
velocity. The solid arrows denote the order of evaluation of the
components for the inverse system model, while the dashed
arrows correspond to the direct representation.

drive
cycle

gear
box

combustion
engine

resulting fuel 
consumption

predefined 
fuel injection

vehicle

P fuel
ṁfuel

ẍ , ẋ,x T wheel=TGB
ωwheel=ωGB

TCE
ωCE

Fig. 1. Block diagram of the inverse and direct system representations.

Since the complete drive cycle is specified for the inverse
model in terms of the acceleration and the speed of the vehicle,
this model can be evaluated in a purely algebraic manner, as
long as no dynamic models are introduced for the remaining
components, that depend on internal state variables. Such
internal variables become necessary, if the dynamic behavior
is taken into account for selected components, such as for the
automatic gear shift procedures described below. In contrast,
the evaluation of the direct system model always corresponds
to solving an initial value problem for a set of ordinary
differential equations.

As an example, this property can be highlighted for the
dynamics of the vehicle itself. In the case of a predefined drive
cycle, where the speed ẋ and the acceleration ẍ are given as
system inputs, the resulting torque

Twheel =
(
Froll +Fair(ẋ) +Fgrav +Finert(ẍ)

)
· rwheel (1)

at the wheels with the radius rwheel is given by a purely
algebraic expression, which depends on the rolling resistance
Froll, the velocity-dependent air resistance Fair, the downhill-
slope force Fgrav, and the inertia force Finert. For the direct
model, however, the torque Twheel has to be transferred to the
speed ẋ by solving the differential equation

ẍ =
Twheel

mveh · rwheel
− Froll
mveh

− Fair(ẋ)

mveh
− Fgrav
mveh

(2)

with the initial velocity ẋ(t0) and the vehicle mass mveh.
Details about all remaining component models are provided
in the following Subsections II-A and II-B.

A. Inverse System Model

As mentioned above, the drive cycle represents the input for
this type of model. In this paper, the discussion is restricted to
analytic representations of a desired velocity profile consisting
of three different phases, namely, acceleration, coasting (or
driving with constant velocity), and deceleration. For this type
of drive cycle, the time horizon t ∈ [t0 ; tf ], t0 = 0, and the
total distance s(tf ) are assumed to be predefined. Additionally,
the acceleration and the speed are bounded by the intervals ẍ ∈[
ẍ ; ẍ

]
and ẋ ∈

[
0 ; ẋ

]
. The optimization routines described

in the following section make use of a piecewise polynomial
representation of the vehicle’s velocity profile according to

ẋi =

3∑
j=0

αij · tj , (3)

where the phases i ∈ {A,B,C} are defined in Fig. 2.

t

ẋ (t )

t ft1 t2
0

ẋA

t0=0

ẋB ẋC

phase A:
acceleration

phase B:
coasting/ constant velocity

phase C:
deceleration

Fig. 2. Definition of a typical velocity profile.

Constraints on the coefficients αij are imposed by the
specification of vanishing initial and final velocities

ẋA(0) = ẋC(tf ) = 0 . (4)

Furthermore, continuity of the velocity and acceleration at
the points of time t1 and t2 is represented by the constraints

ẋA(t1) = ẋB(t1) and ẍA(t1) = ẍB(t1) (5)

as well as

ẋB(t2) = ẋC(t2) and ẍB(t2) = ẍC(t2) . (6)

Constraints on the overall drive cycle length s(tf ) are taken
into account in a weak formulation by a suitable penalty term
in the optimization routine described in the following section.

The speed and acceleration profiles ẋ and ẍ, respectively,
serve as inputs for the subsequent component model, contain-
ing all external effects acting on the vehicle with the mass
mveh, the cross-section area Aveh, the drag coefficient cw
and the air density ρ. In addition, properties of the road
are accounted for by the angle of inclination γ, the friction
coefficient µ, and the gravitational constant g. The rolling
resistance Froll, the air resistance Fair, the downhill-slope
force Fgrav, and the inertia force Finert in both the inverse
model (1) and the direct model (2) are given by

Froll = mveh · g · cos (γ(x)) · µ , (7)

Fair =
1

2
ρ · cw ·Aveh · ẋ2 , (8)
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Fgrav = mveh · g · sin (γ(x)) , and (9)

Finert = mveh · ẍ . (10)

Using the equations above, and the relation ωwheel = ẋ
rwheel

for the angular velocity of the wheels, the gear box model
can be employed to relate the variables ωwheel = ωGB and
Twheel = TGB to the corresponding angular velocity and
torque on the combustion engine’s side with the correspond-
ing gear ratio λ. Here, the relations ωCE = λ · ωGB and
TGB = λ · TCE hold for a fixed gear ratio λ.

To automatically perform gear shifting during evaluation of
the drive cycle, the following gear box model including an
underlying control loop is taken into consideration. The control
loop is designed in such a way to prevent violations of the
maximum admissible angular velocity and the maximum ad-
missible torque of the internal combustion engine. Violations
of the operating range for the admissible velocity range are
prevented by a suitable choice of the values λ for each gear
number iGB , while violations of the torque characteristic can
only be avoided by a limitation of the variation rate λ̇ of the
transmission ratio during the shifting process. An example is
shown in Fig. 3, where the torque Tinert(ω̇CE) = JCE · ω̇CE ,
resulting from acceleration and deceleration of the combustion
engine during gear shifting has to be bounded such that

Tidle ≤ TCE(ωCE) ≤ TCE(ωCE) (11)

holds. For that purpose, the engine torque balance

TCE(ωCE) =
1

λ
· TGB(ωCE) + Tinert(ω̇CE) (12)

is considered during gear shifting.
Here, the torque TCE(ωCE) is the one that is actually

being provided by the combustion engine, while Tinert(ω̇CE)
accounts for the engine’s mass moment of inertia JCE . The
lower bound in (11) corresponds to the idling torque of the
motor. For operating points below this line in Fig. 3, active
braking of the vehicle is required (torque Tbrake < 0)). If the
upper bound TCE(ωCE) becomes critical, the variation rate
λ̇ (t) has to be limited according to the following procedure.

By considering the time derivative of the engine’s angular
velocity

ω̇CE (t) = λ̇ (t) · ωGB (t) + λ (t) · ω̇GB (t) (13)

and substituting it into (12), the relation

λ̇ (t) ≤
−λ · ω̇wheel +

− 1
λ ·Twheel+TCE(λ·ωwheel)

JCE

ωwheel
=: ˙̄λ (t)

(14)
can be derived. To satisfy this inequality, the gear ratio λ is
determined during the shifting process by a PI-control law

λPI (t) = KR ·

∆λ (t) +
1

TN

t∫
0

∆λ (τ) dτ

 (15)

with ∆λ (t) = λf (iGB) − λ (t) + ∆λ∗, λ (0) = λ (iGB(0)),
where λ (iGB) is the steady-state gear ratio corresponding

to iGB . The desired gear ratio λ (iGB) is filtered by a
second-order lag element to guarantee smooth switching pro-
cesses. The corresponding filtered output signal is denoted by
λf (iGB). With this information, the admissible gear ratio is
obtained by

λ (t) = λ (0) +

t∫
0

λ̇GB (τ) dτ (16)

with

λ̇GB (t) =

{
λ̇PI (t) if λ̇PI (t) ≤ ˙̄λ (t) holds
˙̄λ (t) else .

(17)

To prevent the effect of integrator windup, the term ∆λ∗ =

Kaw ·
(
λ̇PI (t)− ˙̄λ (t)

)
is included in the control law (15).

admissible range

T CE

ωCE

operation with
constant power
P=const

ωCEωCE

T CE(ωCE)

T idle

T inert (ω̇CE)

operating point 1

operating point 2

Fig. 3. Definition of the operating range for the combustion engine while
gear shifting between two operating points with identical power demand.

Note that gear shifting is only performed at discrete points
of time tk with a fixed sampling rate tk+1 − tk. Depending
on the current gear number iGB(tk) ∈ {1, . . . , 5}, the shifting
strategy is given by

iGB(tk+1) =


iGB(tk) + 1 for ωCE > ω and iGB(tk) < 5

iGB(tk)− 1 for ωCE < ω and iGB(tk) > 1

iGB(tk) else .
(18)

Finally, the dynamics of the combustion engine is described.
It mainly consists of a quasi-static fuel consumption map
which relates the engine’s steady-state torque T̃CE and the
angular velocity ωCE to the fuel mass flow ṁfuel(t). To make
this model more realistic, a dead time element, representing
the filling up of the cylinders, and a first-order lag element
covering delays introduced by the finite volume of the suction
pipe are assumed to describe the relation between the actual
motor torque TCE and its steady-state value T̃CE according
to the transfer function

GCE(s) =
TCE(s)

T̃CE(s)
=

e−Tts

(TDs+ 1)
. (19)

To obtain a causal, invertible, minimum-phase approxima-
tion, the dead time element is approximated by a first-order
lag element with a further extension by two lead elements for
which T̃ > 0, T̃ � Tt, T̃ � TD holds. This leads to the
transfer function

GCE(s) ≈ (T̃ s+ 1)2

(TDs+ 1)(Tts+ 1)
(20)
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with
G−1
CE(s) ≈ (TDs+ 1)(Tts+ 1)

(T̃ s+ 1)2
(21)

which is used for the evaluation of the inverse system model.
The overall fuel consumption (corresponding to the fuel tank
model) can be determined easily by integration of the mass
flow resulting from the consumption map depicted in Fig. 4(a)
with respect to time.

B. Implementation of the Direct System Model

The direct system model consists of exactly the same system
components that were introduced in the previous subsection.
As already mentioned, algebraic component models such as
the one representing the vehicle’s dynamics turn into sets of
ordinary differential equations during this model inversion.
The vehicle model is now given by (2), where the resulting
velocity profile ẋ(t) and the distance x(t) are computed as the
solution to an initial value problem. The previously introduced
gear box model — which has already been given in terms
of a dynamic representation in the inverse model — remains
unchanged.

Finally, the inverted combustion engine model makes use of
the torque characteristic shown in Fig. 4(b). In analogy to the
fuel consumption map in Fig. 4(a), it is possible to describe
this quasi-static dependency by a polynomial approximation.
Moreover, the transfer function GCE(s) is now used instead of
G−1
CE(s) to determine the input torque of the gear box which is

further transferred to the torque acting onto the vehicle. The
combustion engine characteristics in Figs. 4(a) and 4(b) are
taken from [3]. They are scaled according to the power and
velocity range of the test rig that is described subsequently.
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(a) Fuel consumption map.
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(b) Torque characteristic.

Fig. 4. Quasi-static characteristics of the internal combustion engine.

C. Conceptional Test Rig Design

To validate the numerical results that are summarized in
the following sections by suitable experiments, a test rig for
a small-scale combustion engine is currently being built up
at the Chair of Mechatronics at the University of Rostock.
In this test rig, a combustion engine (Fig. 5, left) is directly
connected to an asynchronous motor (Fig. 5, right) which
is operated in a torque-controlled mode. In such a way, the
resulting torque TCE at the combustion engine side of the
gear box, see also Fig. 1, is specified as the counter torque
provided by the asynchronous motor. The dynamic models

for the vehicle and the gear box (including the gear shifting
strategies) then have to be evaluated in real time according to
the system representation described above. In such a way, it is
possible to experimentally compare the influence of different
gear box operating strategies and drive cycles on the fuel
consumption of the internal combustion engine. Furthermore,
a virtual parallel hybrid vehicle can be implemented easily on
this test rig. For this purpose, the resulting torque at the gear
box has to be computed online after including further real-time
applicable simulation models for an electric motor-generator
unit as well as for energy storage devices such as batteries. A
suitable control-oriented battery model can be found in [10].

Fig. 5. Small-scale combustion engine test rig.

III. OPTIMIZATION OF DRIVE CYCLES AND OPERATING
STRATEGIES

In this section, two different optimization scenarios are
taken into account. Firstly, the parameters αij , t1, and t2
of the drive cycle defined in (3) are optimized by a Nelder-
Mead simplex method (FMINSEARCH in MATLAB) such that
the overall fuel consumption is minimized with fixed gear
shifting points ωCE and ωCE . Secondly, the values ωCE
and ωCE are optimized simultaneously with the drive cycle
parameters. In both cases, the equality constraints (4)–(6) are
considered exactly. Bounds on the admissible maximum values
of the acceleration and velocity (cf. Subsection II-A), the path
length s (tf ), a minimum safety margin to the upper bound
TCE for the engine torque, a minimum distance of ωCE and
ωCE as well as the prevention of positive accelerations during
phase C are accounted for by additive penalty terms in the
cost function corresponding to a virtual enlargement of the
fuel consumption. The optimization results are summarized in
Figs. 6 and 7 for both scenarios, where the fuel consumption
for scenario 1 is 2.653 l

100km and 2.407 l
100km for scenario 2.

IV. DESIGN OF VELOCITY CONTROL PROCEDURES

A. Design of Observer-Based Cruise Control Strategies

In this section, a basic procedure is presented for tracking of
desired velocity profiles in cruise control applications. Here, it
is necessary to adjust the fuel mass flow provided to a combus-
tion engine in such a way that a-priori unknown disturbances
are compensated. These disturbances mainly result from the
forces summarized in (7)–(9), where in practical applications
neither the vehicle mass mveh, the inclination angle γ of
the road, the coefficients cw for the drag resistance nor the
coefficient µ for the rolling resistance are known exactly.
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Fig. 6. Optimization scenario 1.
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Fig. 7. Optimization scenario 2.

For these reasons, the disturbance torque acting onto the
combustion engine is estimated by a suitable observer. This
estimate, moreover, takes into account imprecise knowledge
concerning the torque and speed dependencies of the fuel
consumption map. This fuel consumption map is typically
given for quasi-static operating conditions. Deviations between
the quasi-static fuel consumption of the combustion engine and
its dynamic operating regime are typically neglected during
control design and are finally estimated together with the
dynamics of the gear shift procedure to enhance the robustness.

Under these assumptions, the simplified system model that
is the basis for the design of the automatic cruise control
procedure is given by

mveh · rwheel · ẍ (t) = mveh · r2wheel · ω̇wheel (t)
= TGB (t)− Td,veh (t) .

(22)

In (22), Td,veh (t) represents all disturbances acting directly on
the vehicle (such as air resistances or downhill-slope forces)
as well as model simplifications in terms of a lumped variable.

The expression (22) is equivalent to the relation

mveh · r2wheel
λ

· ω̇wheel (t) = TCE (t)− Td,CE (t) (23)

if the gear box ratio λ > 0 is assumed to be a fixed system pa-
rameter. The corresponding disturbance torque — represented

by the torque Td,CE (t) at the combustion engine’s shaft —
is estimated in the following by means of an observer (value
T̂d,CE (t)). Moreover, the torque TCE (t) that is provided by
the combustion engine serves as the system input.

It can be calculated by a linear feedback control law

TCE (t) = T̂d,CE (t) +
mveh · r2wheel

λ
· ω̇wheel,d (t)

+ kp · (ωwheel,d (t)− ωwheel (t))

+ ki ·
t∫

0

(ωwheel,d (τ)− ωwheel (τ)) dτ ,

(24)

where ωwheel,d (t) and ωwheel (t) represent the desired and
actual angular velocities of the wheels, respectively.

This control input is transferred to the commanded signal
for the fuel mass flow according to Subsection II-A. Firstly, the
quasi-static motor torque T̃CE (t) is determined by evaluating
the transfer function given in (21). Secondly, the fuel consump-
tion map shown in Fig. 4(a) is evaluated for the torque T̃CE (t)
and the combustion engine’s rotary speed for the steady-state
gear ratio λ, that is, for

ωCE (t) ≈ λ · ωwheel (t) =
λ

rwheel
· ẋ (t) . (25)

The corresponding fuel mass flow ṁ (t), or correspondingly
its power equivalent Pfuel, is used as the input of the direct
system model in Fig. 1.

In (24), the gain kp (λ) of the proportional feedback as well
as the gain ki (λ) of the integrating feedback are determined
by a gain-scheduled pole assignment with the eigenvalues λc,i,
i = 1, 2, which are chosen to be independent of the gear box
ratio λ. With this choice, the controller gains are given by

kp (λ) = − (λc,1 + λc,2) ·mveh · r2wheel
λ

and

ki (λ) =
λc,1 · λc,2 ·mveh · r2wheel

λ
.

(26)

The purpose of using the integrating velocity feedback is to
compensate steady-state model errors which are not estimated
exactly by the following disturbance observer.

The disturbance observer for the torque T̂d,CE (t) is based
on the state equations[

˙̂ωwheel (t)
˙̂
T d,CE (t)

]
=

[
λ

mveh·r2wheel
·
(
TCE (t)− T̂d,CE (t)

)
0

]
+
[
lb,1 lb,2

]
· (ym (t)− ŷm (t)) , (27)

where the second differential equation is an integrator distur-
bance model for the torque. This torque as well as the estimate
ω̂wheel (which replaces the velocity ωwheel (t) in (24),(25)) are
determined for the vehicle velocity ym (t) = ẋ (t) = rwheel ·
ωwheel (t) as the measured system output with the correspond-
ing output estimate ŷm. Here, again a gain-scheduled pole
assignment is performed with the eigenvalues λo,i, i = 1, 2,
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according to

lb =

[
lb,1
lb,2

]
=

[
− (λo,1+λo,2)

rwheel

−λo,1·λo,2·mveh·rwheelλ

]
. (28)
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(c) Fuel mass flow.
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Fig. 8. Results of observer-based velocity control.

B. Nonlinear Internal Model Control (IMC)
As an alternative to the observer-based velocity control

presented in Subsection IV-A, an IMC structure can be em-
ployed. In an underlying control loop, the vehicle’s speed is
asymptotically stabilized by the proportional control law

T̃CE (t) = T̃CE,IMC (t)− kp · ωwheel (t) , (29)

which, however, does not guarantee tracking of desired veloc-
ity profiles and compensation of unknown disturbances. Here,
the controller gain kp is chosen according to

kp (λ) = −λc ·mveh · r2wheel
λ

(30)

with a fixed desired eigenvalue λc of the closed control loop.
The IMC control part of the torque T̃CE (t) is given by

T̃CE,IMC (s) =
mveh·r2wheel

λ · s+ kp (λ)

TIMC · s+ 1
·∆Ω(s) , (31)

where ∆Ω(s) corresponds to the Laplace transform of the
control error ∆ω = ωwheel,d (t) − ωwheel (t) + ω̂wheel (t)
with the sufficiently small time constant TIMC guaranteeing
causality of the transfer function in (31). The term ω̂wheel (t)
results from evaluating the simplified parallel model of the
plant (23) for the input torque T̃CE (t), where the disturbance
torque is set to zero.

The excellent tracking performance of both controllers can
be seen in Figs. 8 and 9, where γ (x) = 0.1 · sin (0.01 · x) is
used to simulate disturbances. In both cases, the fuel mass
flow is adjusted by an additive term Kf ·

∫ t
0
Tbrake(τ)dτ

(s.t. ṁfuel ≥ 0) to minimize the braking effort if a fuel mass
flow is computed which is unnecessarily large.
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(a) Desired velocity (dashed); ac-
tual velocity (solid).
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Fig. 9. Results of nonlinear internal model control.

V. CONCLUSIONS AND OUTLOOK ON FUTURE WORK

In this paper, different optimization approaches have been
presented for the minimization of the fuel consumption of
combustion engine-based power trains. Especially, the offline
planning of optimal velocity profiles for vehicles which are
operated according to a fixed timetable leads to a significant re-
duction of the fuel consumption if the switching points for gear
shifting are adapted accordingly. In such a way, it is possible to
operate the combustion engine in the point of its minimal fuel
consumption. Additionally, the corresponding system models
have been used to design cruise control procedures which can
be employed to follow predefined velocity profiles in spite of
disturbances such as a-priori unknown downhill-slope forces.

To exploit the advantages of optimal control also in this
case, future work will deal with an online adaptation of the
vehicle’s operating strategy according to a real-time model
predictive control procedure. Moreover, future work aims at
the implementation of all control and observer procedures on
a corresponding test rig at the Chair of Mechatronics at the
University of Rostock according to Subsection II-C.
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