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w-INJECTIVE MODULES AND

w-SEMI-HEREDITARY RINGS

Fanggui Wang and Hwankoo Kim

Abstract. Let R be a commutative ring with identity. An R-module M

is said to be w-projective if Ext1
R
(M,N) is GV-torsion for any torsion-free

w-module N . In this paper, we define a ring R to be w-semi-hereditary
if every finite type ideal of R is w-projective. To characterize w-semi-
hereditary rings, we introduce the concept of w-injective modules and
study some basic properties of w-injective modules. Using these concepts,
we show that R is w-semi-hereditary if and only if the total quotient ring
T (R) of R is a von Neumann regular ring and Rm is a valuation domain

for any maximal w-ideal m of R. It is also shown that a connected ring R

is w-semi-hereditary if and only if R is a Prüfer v-multiplication domain.

1. Introduction

Throughout, R denotes a commutative ring with identity 1 and E(M) de-
notes the injective hull (or envelope) of an R-module M . And let us regard
that the v-, t- and w-operation are well-known star-operations on domains. For
unexplained terminologies and notations, we refer to [3, 14, 15].

Prüfer v-multiplication domains (PVMD for short) have received a good deal
of attention in much literature. A domain R is called a PVMD if every nonzero
finitely generated ideal I is t-invertible, that is, there is a fractional ideal B of
R such that (IB)t = R, equivalently, (IB)w = R. A natural question arises as
follows: How do we extend the study on PVMDs to commutative rings with
zero divisors. There are at least two methods for doing this. One is to replace
the quotient field of a domain R with the total quotient ring T (R) and to define
A−1 = {x ∈ T (R) |xA ⊆ R} for an R-submodule A of T (R). In this case, we
must consider regular ideals of R and we get the notion of so-called Prüfer
v-multiplication rings (PVMRs for short) for which every finitely generated
regular ideal of R is t-invertible (see [13]). The other is to replace the quotient
field of a domain R with the ring Q0(R) of so-called finite fractions of R and to
define A−1 = {x ∈ Q0(R) | xA ⊆ R} for an R-submodule A of Q0(R), where
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Q0(R) is the subring of T (R[X ]) consisting of elements
∑

n

i=0
aiX

i

∑
n

i=0
biXi ∈ T (R[X ])

with aibj = ajbi for all i, j. Recall an ideal I of R is called semi-regular if there
is a finitely generated subideal B of I with ann(I) = 0. In the second case,
we must consider semi-regular ideals of R and we get the notion of Q0-Prüfer
v-multiplication rings (Q0-PVMRs for short) for which every finitely generated
semi-regular ideal of R is t-invertible (see [11]).

Since the concept of w-modules appeared in [22], we note the method of the
w-operation on domains is effective for commutative rings with zero divisors.
Let J be an ideal of R. Following [22], J is called a Glaz-Vasconcelos ideal (a
GV-ideal for short) if J is finitely generated and the natural homomorphism
ϕ : R → J∗ = HomR(J,R) is an isomorphism (also see [5]). Note that the set
GV(R) of GV-ideals of R is a multiplicative system of ideals of R. Let M be
an R-module. Define

torGV(M) = {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

Thus torGV(M) is a submodule of M . Now M is said to be GV-torsion (resp.,
GV-torsion-free) if torGV(M) = M (resp., torGV(M) = 0). An R-module M is
GV-torsion if and only if Mm = 0 for any maximal w-ideal m of R (see [21]). A
GV-torsion-free module M is called a w-module if Ext1R(R/J,M) = 0 for any
J ∈ GV(R). Then projective modules and reflexive modules are w-modules.
In a recent paper [23], it was shown that flat modules are w-modules. For any
GV-torsion-free module M ,

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M . It
is clear that a GV-torsion-free module M is a w-module if and only if Mw =
M . Note that in the language of torsion theories, the w-envelope for modules
coincides with the torGV-injective envelope with respect to the torsion theory
whose torsion modules are the GV-torsion modules and the torsion-free modules
are the GV-torsion-free modules. Thus the w-operation theory is a bridge
closely connecting torsion theory with multiplicative ideal theory.

The notions ofw-projective modules and w-flat modules appeared first in [16]
when R is a domain. In [20], the notion of w-projective modules was extended
to arbitrary commutative rings. Recall that a ring R is called semi-hereditary if
every finitely generated ideal of R is projective. Endo [2] proved that a ring R
is semi-hereditary if and only if the total quotient ring of R is a von Neumann
regular ring and Rp is a valuation domain for any maximal ideal p of R. We
also define a ring R to be w-semi-hereditary if every finite type ideal of R is
w-projective. It follows from [20, Theorem 4.13] that a w-semi-hereditary ring
is certainly a Q0-PVMR, and therefore, a PVMR.

In this paper, we introduce the concept of w-injective modules and study
their properties. As in the classical homological algebra, we also give with the
help of the notions above a systematical characterization of w-semi-hereditary
rings.
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2. Preliminaries

Let M and N be R-modules and let f : M → N be a homomorphism.
Following [19], f is called a w-monomorphism (resp., w-epimorphism, w-iso-
morphism) if fm : Mm → Nm is a monomorphism (resp., an epimorphism, an
isomorphism) for any maximal w-ideal m of R. A sequence A → B → C of
modules and homomorphisms is called w-exact if the sequence Am → Bm → Cm

is exact for any maximal w-ideal m of R. In [16], a finite type module M means
a torsion-free module with Mw = Bw for some finitely generated submodule B
of M . In [22] the notion of finite type modules was enlarged to GV-torsion-
free modules. In [19] the notion of finite type modules has been redefined.
An R-module M is said to be of finite type if there exists a finitely generated
free R-module F and a w-epimorphism g : F → M . Similarly, an R-module
M is said to be of finitely presented type if there exists a w-exact sequence
F1 → F0 → M → 0, where F1 and F0 are finitely generated free.

An R-module M is called a w-flat module if the induced map 1⊗ f : M ⊗R

A → M ⊗R B is a w-monomorphism for any w-monomorphism f : A → B.
Certainly, a GV-torsion modules is w-flat.

For easy reference, we list some of the results on w-flat modules which will
be used frequently.

Theorem 2.1 ([8, Theorem 3.3]). The following statements are equivalent for

a module M :

(1) M is w-flat.
(2) For any w-exact sequence 0 → A → B → C → 0, the sequence

0 → M ⊗R A → M ⊗R B → M ⊗R C → 0

is w-exact.
(3) Mm is a flat Rm-module for any maximal w-ideal m of R.

(4) TorR1 (M,N) is a GV-torsion module for any R-module N .

(5) TorRn (M,N) is a GV-torsion module for any R-module N and any

n > 1.
(6) The natural homomorphism M ⊗R I → IM is a w-isomorphism for

any ideal I of R.

(7) The natural homomorphism M ⊗R I → IM is a w-isomorphism for

any finite type ideal I of R.

(8) The natural homomorphism M ⊗R I → M is a w-monomorphism for

any finite type ideal I of R.

(9) The natural homomorphism M ⊗R I → M is a w-monomorphism for

any ideal I of R.

Remark. The notion of w-flat modules appeared first in [16] in which a torsion-
free module M over a domain R is called w-flat if Mm is a flat Rm-module for
any maximal w-ideal of R. From Theorem 2.1, we see that this notion has been
extended. For example, let R be a domain and let J be a GV-ideal of R such
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that J 6= R. Thus R/J is GV-torsion, and therefore is a w-flat module, but
not torsion-free.

Proposition 2.2 ([8, Proposition 3.4]). Let 0 → A → F → M → 0 be w-exact,
where F is a GV-torsion-free w-flat module and A is a submodule of F . Then

the following statements are equivalent:

(1) M is w-flat.
(2) Aw ∩ (IF )w = (IA)w for any ideal I of R.

(3) Aw ∩ (IF )w = (IA)w for any finitely generated ideal I of R.

Proposition 2.3 ([8, Proposition 3.9]). Let M be an R-module and let {Ai |
i ∈ Γ} be a direct system of w-flat submodules of M over a directed index set

Γ. Then lim
→

Ai is w-flat.

Let M be an R-module and set L(M) = (M/torGV(M))w . Recall from [20]
that M is called w-projective if Ext1R(L(M), N) is GV-torsion for every torsion-
free w-module N . When M is of finite type, we have that M is w-projective if
and only if Ext1R(M,N) is GV-torsion for every torsion-free w-module N (see
[20, Theorem 2.16]).

Proposition 2.4. Every w-projective module is w-flat.

Proof. This follows from [20, Theorem 2.5] and Theorem 2.1. �

We record some results on w-projective modules for subsequent usage.

Lemma 2.5 ([20, Proposition 2.3]). Let M and M ′ be R-modules and let

f : M → M ′ be a w-isomorphism. Then M is w-projective if and only if M ′

is w-projective.

Lemma 2.6 ([20, Theorem 2.18]). Every w-projective module of finite type is

of finitely presented type.

Lemma 2.7 ([20, Proposition 2.17]). Let 0 → A
f
→ B

g
→ C → 0 be a w-exact

sequence. If A and C are w-projective of finite type, then B is w-projective of

finite type.

Proposition 2.8 ([20, Theorem 2.7]). Let M be an R-module of finitely pre-

sented type. Then M is w-projective if and only if Mm is free over Rm for any

maximal w-ideal m of R.

3. w-injective modules

In this section, we introduce the concept of w-injective modules and study
their properties.

Definition 3.1. An R-module E is said to be w-injective if

0 → HomR(C,L(E)) → HomR(B,L(E)) → HomR(A,L(E)) → 0

is w-exact for any w-exact sequence 0 → A → B → C → 0.
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Example 3.2. Certainly, if f : M → N is a w-isomorphism, then M is w-
injective if and only if N is w-injective. In particular, GV-torsion modules
are w-injective. Therefore, a w-injective module is not necessarily an injective
module.

In the following, we give characterizations of w-injective modules, which are
similar to those of injective modules.

Theorem 3.3. The following statements are equivalent for a w-module E.

(1) E is w-injective.
(2) 0 → HomR(C,E) → HomR(B,E) → HomR(A,E) → 0 is w-exact for

any exact sequence 0 → A → B → C → 0.
(3) Ext1R(M,E) is GV-torsion for any module M .

(4) ExtnR(M,E) is GV-torsion for any module M and any integer n > 1.

Proof. (1)⇒(2). Since E is a w-module, we have L(E) = E.
(2)⇒(3). Let 0 → A → F → M → 0 be exact, where F is free. This fol-

lows by comparing the w-exact sequence 0 → HomR(M,E) → HomR(F,E) →
HomR(A,E) → 0 with the exact sequence 0 → HomR(M,E) → HomR(F,E) →
HomR(A,E) → Ext1R(M,E) → 0.

(3)⇒(1). Let 0 → A
f
→ B

g
→ C → 0 be w-exact. Set C1 = Im(g) and

C2 = C/C1. Then 0 → C1 → C → C2 → 0 is exact and C2 is GV-torsion.
Since

0 → HomR(C2, E) → HomR(C,E) → HomR(C1, E) → Ext1R(C2, E)

is exact and HomR(C2, E) = Ext1R(C2, E) = 0, we have HomR(C1, E) ∼=
HomR(C,E).

Set A1 = ker(f) and B1 = Im(f). Then A1 is GV-torsion and 0 → A1 →
A → B1 → 0 is exact. By the same argument, we have HomR(B1, E) ∼=
HomR(A,E).

Set B2 = ker(g). Then 0 → B2 → B → C1 → 0 is exact. Hence
0 → HomR(C1, E) → HomR(B,E) → HomR(B2, E) → Ext1R(C1, E) is ex-
act. Note that (B1+B2)/B1 and (B1+B2)/B2 are GV-torsion. Thus we have
HomR(B1, E) = HomR(B1 +B2, E) = HomR(B2, E). Hence 0 → HomR(C,E)
→ HomR(B,E) → HomR(A,E) → 0 is w-exact.

(3)⇒(4). Let n > 1 and let 0 → A → F → M → 0 be exact, where F is
free. Then ExtnR(M,E) ∼= Extn−1

R (A,E). Hence ExtnR(M,E) is GV-torsion by
induction.

(4)⇒(3). This is trivial. �

Corollary 3.4. A module E is w-injective if and only if Ext1R(M,L(E)) is

GV-torsion for any module M ; if and only if ExtnR(M,L(E)) is GV-torsion for

any module M and for all n > 1.

Corollary 3.5. Let E be a GV-torsion-free injective module. Then E is a

w-injective w-module.
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In [21, Theorem 1.3(1)], it is shown that an R-module N is GV-torsion if and
only if HomR(N,E) = 0 for any GV-torsion-free module E. (Note that this
result is well known in torsion theory.) It is also known that for a hereditary
torsion theory τ , anR-moduleN is τ -torsion if and only if HomR(N,E(M)) = 0
for any τ -torsion-free module M [6, Proposition 1.2]. The following result is a
variant of these results.

Theorem 3.6. An R-module N is GV-torsion if and only if HomR(N,E) = 0
for any w-injective w-module E.

Proof. Certainly, if E is a w-injective w-module and N is GV-torsion, then
HomR(N,E) = 0. Conversely, set T = torGV(N) and C = N/T . Then C
is GV-torsion-free. By [19, Proposition 1.1], E = E(C) is also GV-torsion-
free. Hence E is a w-injective w-module E by Corollary 3.5. Therefore,
HomR(N,E) = 0 by hypothesis. Since 0 → HomR(C,E) → HomR(N,E)
is exact, we have that HomR(C,E) = 0, and hence the inclusion map C →֒ E
is the zero homomorphism. So C = 0, and hence N is GV-torsion. �

It is well known that an R-module E is injective if and only if HomR(−, E)
is an exact functor. The corresponding result for w-injective modules is the
following:

Theorem 3.7. A sequence 0 → A
f
→ B is w-exact if and only if, for any

w-injective w-module E, the sequence HomR(B,E) → HomR(A,E) → 0 is

w-exact.

Proof. It is sufficient to show the “if” part. Set A1 = ker(f), B1 = Im(f) and
C = cok(f). Then 0 → A1 → A → B1 → 0 and 0 → B1 → B → C → 0 are
exact. Hence the sequences HomR(B1, E) → HomR(A,E) → HomR(A1, E) →
0 and HomR(B,E) → HomR(B1, E) → 0 are w-exact. Consider the following
commutative diagram with w-exact rows:

HomR(B,E) //

��

HomR(A,E) // 0 //

��

0

HomR(B1, E) // HomR(A,E) // HomR(A1, E) // 0

Then HomR(A1, E) is a GV-torsion module by w-Five Lemma (see [19, Lemma
1.1]). Now we show that A1 is GV-torsion. Take A1 = A1/torGV(A1) and
E = E(A1). Then

0 → Hom(A1, E) → Hom(A1, E) → Hom(torGV(A1), E)

is exact. By Theorem 3.6, Hom(torGV(A1), E) = 0. Since Hom(A1, E) is
GV-torsion, Hom(A1, E) is GV-torsion. In particular, the canonical injection
i : A1 → E is a GV-torsion element, so A1 = 0. Hence A1 is GV-torsion.
Therefore 0 → A → B is w-exact. �
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The Injective Production Lemma states that if M is a flat R-module and N
is an injective R-module, then HomR(M,N) is injective. The following is the
w-theoretic analogue of this result.

Theorem 3.8. Let M be w-flat and let E be a w-injective w-module. Then

HomR(M,E) is w-injective.

Proof. Let 0 → A → B → C → 0 be w-exact. Then 0 → M⊗RA → M⊗RB →
M⊗RC → 0 is w-exact sinceM is w-flat. BecauseE is a w-injective w-modules,
we have that

0 → HomR(M ⊗R C,E) → HomR(M ⊗R B,E) → HomR(M ⊗R A,E) → 0

is w-exact by Theorem 3.3. Note that HomR(M,E) is also a w-module. By the
Adjoint Isomorphism Theorem, we have that HomR(M,E) is w-injective. �

We say that an R-module M is divisible if M = sM for all non-zero-divisors
s of R.

Proposition 3.9. Let E be a w-injective w-module. Then E is divisible.

Proof. Let s be a non-zero-divisor of R. Then Ext1R(R/(s), E) is GV-torsion by
Theorem 3.3. Since s is a non-zero-divisor, sE is also a w-module. By [14] and
[22, Theorem 2.7], Ext1R(R/(s), E) ∼= E/sE is GV-torsion-free, which implies
E/sE = 0, that is, E = sE. Hence E is divisible. �

In [1], it is shown that a domain R is a Krull domain if and only if every
divisible w-module is injective. Hence we have the following:

Corollary 3.10. If R is a Krull domain, then every w-injective w-module is

injective.

By combining Corollary 3.10 with Corollary 3.5, one sees readily that over
Krull domains the class of all w-injective w-modules and the class of all GV-
torsion-free injective modules are identical.

Let A, B and C be R-modules. Consider the natural homomorphism

η : A⊗RHomR(B,C) → HomR(HomR(A,B), C),

by η(a⊗ f)(g) = f(g(a)) for a ∈ A, f ∈ HomR(B,C) and g ∈ HomR(A,B).

Lemma 3.11. Let A be finitely generated.

(1) If A is projective, then η is an isomorphism.

(2) If C is a w-injective w-module, then η is a w-epimorphism.

Proof. (1) This is well known.
(2) Let g : F → A → 0 be exact, where F is finitely generated free. Then

0 → HomR(A,B) → HomR(F,B) is exact. As C is a w-injective w-module, we
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have the following commutative diagram with w-exact rows:

F ⊗R HomT (B,C) //

∼=
��

A⊗R HomT (B,C) //

ηA

��

0

HomT (HomR(F,B), C) // HomT (HomR(A,B), C) // 0

Hence ηA is a w-epimorphism by [19, Lemma 1.1]. �

Lemma 3.12. Let S be the set of all non-zero-divisors of R. Suppose M is

a finitely generated torsion-free R-module such that MS is a projective T (R)-
module.

(1) There is a finitely generated free R-module F such that M ⊆ F and

(F/M)S is a projective T (R)-module.

(2) If M is w-flat, N is a divisible module, and E is a w-injective w-
module, then

η : M ⊗R HomR(N,E) → HomR(HomR(M,N), E)

is a w-isomorphism. Moreover, Ext1R(F/M,N) is GV-torsion.

Proof. (1) SinceMS is a projective T (R)-module,MS is a summand of a finitely
generated free T (R)-module G, that is, G = MS ⊕ N for some T (R)-module
N . Let x1, . . . , xn be an T (R)-basis of G. Set F = Rx1 + · · ·+ Rxn. Then F
is a free R-module and FS = G. Since M is finitely generated, there is s ∈ S
such that sM ⊆ F . Since M is torsion-free, M → sM ⊆ F is a monomorphism
and (F/M)S ∼= N is a projective T (R)-module.

(2) By (1), we have an exact sequence 0 → M → F → F/M → 0, where F
is finitely generated free and (F/M)S is a projective T (R)-module. Hence

0 → HomR(F/M,N) → HomR(F,N) → HomR(M,N) → Ext1R(F/M,N) → 0

is exact. Thus we have the following commutative diagram with exact rows

0 // TorR1 (F/M,HomR(N,E)) //

η1

��

M ⊗R HomR(N,E) //

ηM

��

F ⊗R HomR(N,E)

ηF

��

0 // HomR(Ext
1
R(F/M,N), E) // HomR(HomR(M,N), E) // HomR(HomR(F,N), E),

where ηF is an isomorphism and ηM is a w-epimorphism by Lemma 3.11. Hence
η1 is a w-epimorphism.

Let L be a torsion-free module. Then 0 → L → LS is exact. Since LS is a
T (R)-module, TorR1 (F/M,LS) is a T (R)-module. Thus we have

TorR1 (F/M,LS) = TorR1 (F/M,LS)S ∼= Tor
T (R)
1 (FS/MS , LS) = 0.

Then we have the following commutative diagram with exact rows:

0 // TorR1 (F/M,L) //

��

M ⊗R L //

��

F ⊗R L

��

0 = TorR1 (F/M,LS) // M ⊗R LS
// F ⊗R LS
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Since M is w-flat, M ⊗R L → M ⊗R LS is a w-monomorphism and

TorR1 (F/M,L)

is GV-torsion for any torsion-free R-module L. Since N is divisible, it is routine
to verify that L = HomR(N,E) is torsion-free. Hence

TorR1 (F/M,HomR(N,E))

is GV-torsion. Thus ηM is a w-monomorphism. �

Let M and N be R-modules. Let S be a multiplicatively closed set of R.
Consider the natural homomorphism

θ : HomR(M,N)S → HomRS
(MS , NS),

by

θ(
f

s
)(
x

1
) =

f(x)

s
,

for s ∈ S, x ∈ M , and f ∈ HomR(M,N). It is well known that if M is finitely
generated, then θ is a monomorphism and that if M is finitely presented, then
θ is an isomorphism.

Lemma 3.13 ([18, Theorem 3.4.8]). Let S be the set of all non-zero-divisors of

R. If M is finitely generated and N is torsion-free, then θ is an isomorphism.

Lemma 3.14 ([20, Theorem 3.12]). Let M be a w-projective module of finite

type and let p be a prime w-ideal of R. Set S = R \ p. If N is a torsion-free

w-module, then θ is an isomorphism.

Lemma 3.15 ([22, Theorem 2.8]). Let M be a module and let N be a w-
module. Then HomR(M,N) is a w-module. Especially, reflexive modules are

w-modules.

Lemma 3.16 ([20, Theorem 1.6]). Let M be a finitely generated module and

let N be a GV-torsion-free module. Then HomR(M,N)w = HomR(M,Nw).

Lemma 3.17. Let S be the set of all non-zero-divisors of R and let N be a

torsion-free w-module. Then NS as an R-module is a w-module. In particular,

T (R) is a w-module.

Proof. Since NS is an essential extension of N , we have E(NS) = E(N). Let
J ∈ GV(R) and x ∈ E(N) with Jx ⊆ NS. Since J is finitely generated, there
is s ∈ S with Jsx ⊆ N . Thus sx ∈ N , and hence x ∈ NS. �

Lemma 3.18. Let S be the set of non-zero-divisors of R and let N be a w-
module over T (R). Then N as an R-module is a w-module.

Proof. Note that N is certainly a GV-torsion-free R-module because JS ∈
GV(T (R)) for every J ∈ GV(R). Let E denote the injective hull of N as an
RS-module. Then it is easy to see that E is certainly the injective hull of N as
an R-module. Let J ∈ GV(R) and x ∈ E with Jx ⊆ N . Then JSx ⊆ NS = N .
Hence x ∈ N by hypothesis. Therefore, N as an R-module is a w-module. �
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Theorem 3.19. Let S be the set of all non-zero-divisors of R and let B be a

finitely generated module.

(1) If B is w-projective, then BS is a w-projective T (R)-module.

(2) If B is w-flat and torsion-free, and BS is a projective T (R)-module,

then B is a w-projective R-module.

Proof. (1) Let N be a w-module over T (R). Then N as an R-module is a
torsion-free w-module by Lemma 3.18. For any R-module X , it is clear that
HomR(X,N) = HomR(X,N)S .

Let m be a maximal w-ideal of T (R) and set p = m ∩R. Then p is a prime
w-ideal of R and p ∩ S = ∅. Hence S ⊆ R \ p and m = pS . Therefore we have
T (R)m = (RS)pS

∼= Rp, which implies that Lm
∼= Lp for any T (R)-module L.

Let Y be of finite type. Then there is a finitely generated submodule Z of Y
such that Y/Z is GV-torsion. Note that JS ∈ GV(T (R)) for any J ∈ GV(R).
Hence YS/ZS is GV-torsion over T (R). Therefore, HomR(Y,N) = HomR(Z,N)
and HomT (R)(YS , N) = HomT (R)(ZS , N). By Lemma 3.13, we have

HomR(Z,N) = HomR(Z,N)S ∼= HomT (R)(ZS , N).

Hence we have HomR(Y,N) = HomT (R)(YS , N).
Let 0 → A → F → B → 0 be an exact R-sequence, where F is finitely

generated free. By Lemma 2.6, A is of finite type. Consider the following
commutative diagram with exact rows:

HomR(F,N)p //

��

HomR(A,N)p //

��

Ext1R(B,N)p //

��

0

HomT (R)(FS , N)m // HomT (R)(AS , N)m // Ext1T (R)(BS , N)m // 0

The two vertical arrows on the left are isomorphisms by the same argument
above. Hence the vertical arrow on the right is an isomorphism. So

Ext1T (R)(BS , N)

is GV-torsion over T (R). Therefore, BS is w-projective over T (R).
(2) Let N be a torsion-free w-module and let 0 → N → E1 → C → 0 be

exact, where E1 is the injective hull of N . Thus C and E1 are GV-torsion-free
and divisible. Then the sequence

0 → HomR(B,N) → HomR(B,E1) → HomR(B,C) → Ext1R(B,N) → 0

is exact. Let E be a w-injective w-module over R. Then

0 → HomR(C,E) → HomR(E1, E) → HomR(N,E) → 0

is w-exact. Since B is w-flat, we have the following commutative diagram with
w-exact rows
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0 //

��

B ⊗R HomR(C,E) //

ηC

��

B ⊗R HomR(E1, E)

ηE1

��

0 // HomR(Ext
1
R(B,N), E) // HomR(HomR(B,C), E) // HomR(HomR(B,E1), E).

By Lemma 3.12, ηC and ηE1
are w-isomorphisms. Hence

HomR(Ext
1
R(B,N), E)

is GV-torsion. Thus Ext1R(B,N) is GV-torsion by Theorem 3.6. Therefore B
is w-projective. �

4. w-semi-hereditary rings

Recall that a semi-hereditary ring is a ring in which all (nonzero) finitely
generated ideals are projective. It is well known that over a domain, an ideal
is projective if and only if it is invertible. Thus a semi-hereditary domain is
a Prüfer domain, which is generalized to the concept of PVMDs: A domain
is a PVMD if all nonzero finitely generated ideals are t-invertible, equivalently
w-invertible. In this section, we generalize this concept to commutative rings
with zero divisors, and characterize some related rings.

Lemma 4.1. (1) Let R be a reduced ring (i.e., nil(R) = 0) and let A and

B be ideals of R. Then A ∩B = 0 if and only if AB = 0.
(2) If Rm is a domain for any maximal w-ideal m of R, then R is reduced.

Proof. (1) Suppose AB = 0. Let x ∈ A∩B. Then x2 = 0. Thus we have x = 0
since R is reduced.

(2) Let N = nil(R). Then Nm = 0 for any maximal w-ideal m of R by
hypothesis. Hence N is GV-torsion. Because R is GV-torsion-free, N = 0. �

Lemma 4.2. Let R = R1 ×R2 be a product decomposition of rings.

(1) Let J = J1 × J2 be an ideal of R. Then J ∈ GV (R) if and only if

Ji ∈ GV (Ri) for i = 1, 2.
(2) Let M = M1 ×M2 be a GV-torsion-free R-module. Then Mwi

is GV-

torsion-free over Ri and Mw = (M1)w1
× (M2)w2

, where Mwi
denotes

the w-envelope of Mi over Ri.

Proof. This is routine. �

Lemma 4.3. Let a ∈ R.

(1) If a is a zero divisor, then ann(ann(a)) 6= R.

(2) If a is not a unit, then (a)w 6= R. In other words, if (a)w = R, then a
is a unit, and therefore (a) = R.

Proof. (1) As a is a zero divisor, ann(a) 6= 0. Thus ann(ann(a)) 6= R.
(2) If a is a non-zero-divisor, then it is clear that (a)w = (a) 6= R. If a is a

zero divisor, then a ∈ ann(ann(a)) 6= R by (1). Since ann(ann(a)) is a w-ideal
of R, we have (a)w ⊆ ann(ann(x)) 6= R. �
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Now we give new characterizations of von Neumann regular rings.

Theorem 4.4. The following statements are equivalent for a ring R.

(1) R is a von Neumann regular ring.

(2) Every R-module is w-flat.
(3) For any a ∈ R, a ∈ (a2)w.
(4) If I is a finitely generated ideal of R, then I ⊆ (I2)w.
(5) Rm is a field for any maximal w-ideal m of R.

Proof. (2)⇒(3). For any a ∈ R, since R/Ra is w-flat and 0 → Ra → R →
R/Ra → 0 is exact, we have ((a) ∩ (a))w = (a)w = (a2)w by Proposition 2.2.
Hence a ∈ (a2)w.

(3)⇒(5). By hypothesis, we have (a)m = (a2)m. Hence Rm is a local von
Neumann regular ring. Hence Rm is a field.

(5)⇒(2). This follows from Theorem 2.1.
(3)⇒(4). Let I = Ra1 + · · · + Ran. Then there is J ∈ GV(R) such that

Jai ∈ (a2i ) for each i. Hence JI ⊆ I2. Therefore I ⊆ (I2)w.
(4)⇒(3) and (1)⇒(2). These are trivial.
(3)+(5)⇒(1). By Lemma 4.1, R is reduced. Let a ∈ R and set I = ann(a).

Then there is J ∈ GV(R) such that Ja ⊆ (a2). Thus, for any c ∈ J , ca =
ra2 for some r ∈ R. Hence c − ra ∈ I, that is, J ⊆ I + (a) = I ⊕ (a).
Then (I + (a))w = I ⊕ (a)w = R, which implies that (a)w is generated by
an idempotent element e. Set R1 = (a)w = Re. Then R1 is a ring with the
identity e. Denote by Iw1

the w-envelope of an ideal I of R1. By Lemma
4.2, (a)w = (a)w1

= R1. By Lemma 4.3, (a) = R1 = Re. Hence, R is a von
Neumann regular ring. �

From Theorem 4.4, it is not necessary to define “w-von Neumann regular
rings”.

Definition 4.5. A ring R is said to be w-semi-hereditary if every finite type
ideal of R is w-projective; equivalently, every finitely generated ideal of R is
w-projective.

Certainly, semi-hereditary rings and PVMDs (Prüfer v-multiplication do-
mains) are w-semi-hereditary. Following [19], an R-module M is called w-
coherent if M is of finite type and each finite type submodule of M is of finitely
presented type; a ring R is called w-coherent if R is w-coherent as an R-module.
Also it is shown that a ring R is w-coherent if and only if every finitely gen-
erated ideal of R is of finitely presented type; if and only if every finite type
submodule of a free module is of finitely presented type [19, Theorem 3.1]. Since
w-projective modules of finite type are of finitely presented type by Lemma 2.6,
every w-semi-hereditary ring is w-coherent.

Proposition 4.6 ([20, Proposition 2.9]). Let I be a nonzero nil ideal of R.

Then I is not w-projective.
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Corollary 4.7. Let R be w-semi-hereditary. Then R is reduced.

Proof. Let u be a nilpotent element of R. Then I = (u) is w-projective by
hypothesis. Hence I = 0 by Proposition 4.6. Hence u = 0. �

Proposition 4.8. Let R = R1 ×R2. Then R is w-semi-hereditary if and only

if R1 and R2 are w-semi-hereditary.

Proof. This is straightforward. �

Next, we will consider the w-operation analogue of rings with weak global
dimension less than or equal to one. The weak global dimension is the measure
of flatness of modules over R. A few characterizations of rings with weak global
dimension less than or equal to one can be found in [4, 12]. The following is
the w-theoretic analogue of these results.

Theorem 4.9. The following statements are equivalent for a ring R.

(1) Every submodules of a w-flat module is w-flat.
(2) Every finite type submodule of a w-flat module is w-flat.
(3) Every finitely generated submodule of a w-flat module is w-flat.
(4) Every finitely generated ideal of R is w-flat.
(5) Every ideal of R is w-flat.
(6) Every finite type ideal of R is w-flat.
(7) Rm is a valuation domain for any maximal w-ideal m of R.

Proof. (1)⇒(2)⇒(3)⇒(4). These are trivial.
(4)⇒(5). Let I be an ideal of R. Then I =

⋃
B, where B ranges over the

set of all finitely generated subideals of I. Hence I is w-flat by Proposition 2.3
(5)⇒(7). Let I be any ideal of R. Then I is w-flat. Hence Im is a flat ideal

of Rm, which implies that every ideal of Rm is flat. Then Rm is a valuation
domain.

(7)⇒(1). This is clear.
(4)⇔(6). This is trivial. �

Let us call a commutative ring R a ring with w-w.gl.dim(R) 6 1 if any
of the equivalent conditions of Theorem 4.9 is satisfied. In fact, for a com-
mutative ring R, w-w.gl.dim(R) can be defined analogously by making the
following substitutions: flat module (w-flat module) and flat dimension (w-flat
dimension).

Corollary 4.10. Let R be a w-semi-hereditary ring. Then every ideal of R is

w-flat.

Proof. This follows from Proposition 2.4 and Theorem 4.9. �

There are several characterizations of semi-hereditary rings in literature (cf.,
[2, 4, 7, 12]). In particular, it is well known that R is semi-hereditary if and
only if every finitely generated submodule of a projective module is projective
[4, Theorem 1.4.3] and that R is semi-hereditary if and only if T (R) is a von
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Neumann regular ring and Rm is a valuation domain for any maximal ideal
m of R [2, Theorem 2]. The following and Theorem 4.14 are the w-theoretic
analogue of these characterizations.

Theorem 4.11. The following statements are equivalent for a ring R.

(1) R is w-semi-hereditary.

(2) Every finite type submodule of a free module is w-projective.
(3) Every finitely generated submodule of a free module is w-projective.
(4) Every finitely generated ideal of R is w-projective.

Proof. (1)⇒(2). Let F be a free module and let M be a finite type submodule
of F . Without loss of generality, we assume that F = Rn is finitely generated.
The assertion is proved by induction on n. If n = 1, then M is a finite type
ideal of R. Hence M is w-projective. Suppose n > 1. Let p : Rn → R be the
n-th projection and set I = p(M). Thus I is of finite type by [19, Proposition
1.3]. Consider the following commutative diagram with exact rows:

0 // M ∩Rn−1 //

��

M //

��

I //

��

0

0 // Rn−1 // Rn // R // 0

Since I is w-projective, I is of finitely presented type by Lemma 2.6. Thus
M ∩ Rn−1 is of finite type. Then M ∩ Rn−1 is w-projective by induction.
Hence M is w-projective by Lemma 2.7.

(2)⇒(3)⇒(4). These are trivial.
(4)⇒(1). Let I be a finite type ideal of R. Then I is w-isomorphic to a

finitely generated subideal B of I. Hence I is w-projective by hypothesis and
Lemma 2.5. �

Lemma 4.12. Let R be a ring such that Rm is a domain for any maximal

w-ideal m of R. Let a be a nonzero element of R and set I = ann(a). If I is

of finite type, then I is generated by an idempotent element.

Proof. Set J = ann(I). Thus IJ = 0, and so I ∩ J = 0 by Lemma 4.1. Hence
I + J is a w-ideal of R. If I + J 6= R, then there is a maximal w-ideal m of
R such that I + J ⊆ m. Note that a

1 6= 0 in Rm, otherwise there is s ∈ R \ m

such that sa = 0, and hence I 6⊆ m. Thus Im = 0 since Rm is a domain. Since
I is a finite type w-ideal, sI = 0 for some s ∈ R \ m, that is, s ∈ ann(I),
which contradicts ann(I) ⊆ m. Then I + J = I ⊕ J = R. This completes the
proof. �

Theorem 4.13. Let R be a w-semi-hereditary ring. If every non-zero-divisor

of R is a unit, then R is a von Neumann regular ring.

Proof. If R is not a von Neumann regular ring, then there is a maximal w-ideal
m of R such that Rm is not a field. Thus there exists a prime subideal p of
m such that pm 6= 0. Let a ∈ m \ p with a

1 6= 0 and write I = ann(a). Then
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0 → I → R → Ra → 0 is exact. Since R is w-semi-hereditary, then I is of
finite type. Because each localization of R at a maximal w-ideal q of R is a
valuation domain by Theorem 4.9, we have that I = Re for some idempotent
element e by Lemma 4.12. Set s = e − a. By ea = 0 ∈ p, we have e ∈ p ⊂ m.
Hence s = e− a ∈ m, therefore, s is not a unit.

Since Ia = 0, I ∩Ra = 0 by Lemma 4.1. Let x ∈ R with sx = ex− ax = 0.
Since ex = ax ∈ I ∩ Ra, we have ex = ax = 0. Thus x ∈ I, whence x =
re = re2 = ex = 0. Thus s is a non-zero-divisor. Therefore, s is a unit by
hypothesis, a contradiction. Hence Rm is a field. Thus R is a von Neumann
regular ring by Theorem 4.4. �

Theorem 4.14. The following statements are equivalent for a ring R:

(1) R is w-semi-hereditary.

(2) T (R) is a von Neumann regular ring and Rp is a valuation domain for

any prime w-ideal p of R.

(3) T (R) is a von Neumann regular ring and Rm is a valuation domain for

any maximal w-ideal m of R.

(4) R is a w-coherent ring with w-w.gl.dim(R) 6 1.

Proof. (1)⇒(2). By Corollary 4.10 and Theorem 4.9, it is sufficient to show
that T (R) is a von Neumann regular ring. Let S be the set of all non-zero-
divisors of R. Then T (R) = RS . Let A be a finitely generated ideal of T (R).
Then there is a finitely generated ideal B of R such that A = BS . Let m be a
maximal w-ideal of T (R) and set p = m∩R. Then p∩S = ∅. Hence S ⊆ R \ p
and m = pS . Then Am

∼= (BS)pS

∼= Bp. Since Rp is a valuation domain, Bp is
free over Rp. By Proposition 2.8, B is w-projective over R. Consequently, A is
w-projective over T (R) by Theorem 3.19(1). Hence T (R) is w-semi-hereditary.
By Theorem 4.13, T (R) is a von Neumann regular ring.

(2)⇒(3). This is trivial.
(3)⇒(1). Let I be a finitely generated ideal of R. For any maximal w-ideal m

of R, Im is free as an Rm-module by hypothesis. Hence I is a w-flat ideal. Since
T (R) = RS is a von Neumann regular ring, IS is a projective ideal of T (R).
By Theorem 3.19(2), I is w-projective, and hence R is w-semi-hereditary.

(1) ⇒ (4). The first assertion is in the remark before Proposition 4.6, while
the second assertion follows from Theorem 4.9 and (1) ⇔ (3).

(4) ⇒ (1). Let I be a finite type ideal of R. Then by Theorem 4.9, I is w-flat.
Since w-w.gl.dim(R) 6 1, again by Theorem 4.9, Rm is a valuation domain for
every maximal w-ideal m of R. Thus Im is Rm-free for every maximal w-ideal
m of R. Moreover since R is w-coherent, I is of finitely presented type. Thus
by Proposition 2.8, I is w-projective, and so R is w-semi-hereditary. �

Recall that a ring R is said to be connected if Spec(R) is a connected topo-
logical space.

Theorem 4.15. Let R be a connected ring. Then R is w-semi-hereditary if

and only if R is a PVMD.
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Proof. Let R be a connected w-semi-hereditary ring. It is sufficient to show
that R is a domain. Let a be a nonzero element and set I = ann(a). Because
Ra is finitely generated w-projective, I is of finite type by Lemma 2.6. Hence I
is generated by an idempotent element e by Lemma 4.12. Since R is connected
and a 6= 0, we have e = 0, and hence I = 0. Hence R is a domain. �

Following Lucas [9, 10, 11], we denote by Q0(R) the ring of finite fractions
of R. In [20], an R-module A is said to have w-rank n if Am

∼= Rn
m for any

maximal w-ideal m of R. And recall that an R-module A is said to be w-
invertible if the trace map τ : A⊗RA∗ → R is a w-isomorphism. In [20], it was
shown that A is w-invertible if and only if M is of finite type and has w-rank
1, that is, Am

∼= Rm for any maximal w-ideal m of R. If A is a submodule of
Q0(R), then A is w-invertible if and only if there is a submodule B of Q0(R)
such that (AB)w = R.

Proposition 4.16. The following statements are equivalent for a commutative

ring R.

(1) Every nonzero finite type ideal of R is w-invertible.
(2) Every nonzero finitely generated ideal of R is w-invertible.
(3) Every nonzero finite type torsion-free module is w-projective and has

finite w-rank.
(4) Every nonzero finitely generated torsion-free module is w-projective and

has finite w-rank.
(5) R is a PVMD.

Proof. (1)⇔(2) and (3)⇔(4). These follow from [20, Theorem 4.15].
(4)⇒(2). This is trivial.
(2)⇒(5). Let a be a nonzero element of R and set I = ann(a). Then Ra is

w-projective and (Ra)m ∼= Rm. Then Im = 0, which implies I = 0 since I is a
w-module. Thus R is a domain, and hence R is a PVMD.

(5)⇒(3). This follows from [17, Theorem 3.9]. �
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