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This paper proposes a Fuzzy Goal Programming model (FGP) for a real aggregate production-planning problem.
To do so, an application wasmade in a Brazilian Sugar and Ethanol Milling Company. The FGPModel depicts the
comprehensive production process of sugar, ethanol, molasses and derivatives, and considers the uncertainties
involved in ethanol and sugar production. Decision-makings, related to the agricultural and logistics phases,
were considered on a weekly-basis planning horizon to include the whole harvesting season and the periods be-
tween harvests. The research has provided interesting results about decisions in the agricultural stages of cutting,
loading and transportation to sugarcane suppliers and, especially, in milling decisions, whose choice of produc-
tion process includes storage and logistics distribution.
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1. Introduction

Brazilian Sugar and EthanolMilling Companies have recently faced a
major organizational change, and industry management is changing
due to the international importance of their products, especially ethanol
and electricity.

The evolution of the sugarcane plantation in Brazil: an increase in
the 2010 harvest compared to the previous year was noted, being the
Central-South region responsible for more than 80% of the Brazilian na-
tional production (Conab, National Supply Company, 2011).

Unfortunately, few quantitative models and optimization methods
can be applied in the planning of industrial tasks of sugar and ethanol
milling companies (Paiva and Morabito, 2009).

Moreover, Jamalnia and Soukhakian (2009) pointed that traditional
Mathematical Programming techniques are not suitable to solve real-
world aggregate production planning problems.

Özcan and Toklu (2009) commented that Goal Programming (GP) is
a useful branch of the Multiple Criteria Decision-Making (MCDM), per-
haps, the oldest and the most widely used MCDM technique to solve
Av. Ariberto Pereira da Cunha,
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multi-objective problems. Caballero et al. (2009) also commented that
GP has been successfully applied in many different areas.

As discussed byWang and Liang (2004) real-world problems related
to aggregate production planning are usually ill-defined,withmore than
one (and, eventually, conflicting) important objective. Besides, decision-
makers are not generally able to specify precise goal values (baselines)
to the objectives to be optimized, to the coefficients in the objective
functions and to the constraints. The same is occurring with right-
hand side coefficients associated with available resource quantities.

In fact, according to Chang (2007), imprecise aspiration levels (goals,
baselines) may exist to the enterprise objectives, a typical situation in
the sugarcane agro-industry where many uncertainties, such as: com-
modity markets, raw material quality, and results of production pro-
cesses are inherent to their planning process. Thus, all these indicate
that GP and Fuzzy Logic are very interesting decision tools to be used
to solve this kind of problems.

Next, we present a few characteristics of this research that differ
from those found in specialized literature on aggregate production-
planning under uncertainty:

– Development of a Fuzzy Goal Programmingmodel for the aggregate
production problem under uncertainty in a sugar mill company;

– Integration of the agricultural, industrial, and logistics phases into a
unique model, to support decision-makings during harvest seasons
and periods between harvests.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2014.07.005&domain=pdf
http://dx.doi.org/10.1016/j.eneco.2014.07.005
mailto:aneirson@feg.unesp.br
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http://dx.doi.org/10.1016/j.eneco.2014.07.005
http://www.sciencedirect.com/science/journal/01409883


Fig. 2. Gk xð Þ e≥gk .
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This paper is organized into Sections. In Section 2 we present the
GP and Fuzzy Logic concepts. In Section 3 we present the adopted
research method. Section 4 refers to the description of the aggre-
gate production-planning problem and its FGP model. Section 5
summarizes the model optimization, and, finally, the conclusions
and suggestions for future researches are in the Section 6, followed
by the references.

2. Fuzzy Goal Programming

One of the benefits of using multi-objective optimization
models is the possibility of extracting a set of meaningful
information related to the analyzed problem, enabling different
analysis (Bellman and Zadeh, 1970; Chang, 2007; Deb, 2001).
Zimmermann (1978) was the first to solve a Linear Programming
problem with several objectives through a fuzzy programming
approach that used the concept of the membership function intro-
duced by Zadeh (1965).

The Fuzzy Set (FS) theory, proposed by Zadeh (1965), is based on
the extension of the classical definition of set A, where each element
x of a given universe X, either belongs to set A or not, whereas in the
FS theory an element belongs to set A with a certain “degree of
membership”.

In classic models of GP, the decision maker has to specify a
precise aspiration level (goal) for each of the objectives. In general,
especially in large-scale problems, this is a very difficult task, and
the use of the Fuzzy Set theory in GP models can overcome
such problem, allowing decision makers to work with imprecise
aspiration levels (Yaghoobi and Tamiz, 2007). Therefore, an objec-
tive with an imprecise aspiration level can be regarded as a fuzzy
goal.

There are three most common types of fuzzy goals to work
with triangular fuzzy numbers (Jamalnia and Soukhakian, 2009;
Yaghoobi and Tamiz, 2007). These types are given by expres-
sions (1)–(3), where the symbol ~ is a fuzzifier that represents the
imprecise fashion in which the goals are stated, and gk is the aspira-
tion level for kth goal:

Gk xð Þ e≤gk;k ¼ 1;…;m ð1Þ

Gk xð Þ e≥gk; k ¼ mþ 1;…;n ð2Þ

Gk xð Þ≅gk; k ¼ nþ 1;…; l ð3Þ

A fuzzy goal can be identified as the fuzzy sets defined over the fea-
sible set with themembership function. The three fuzzy goals above are
illustrated from Figs. 1 to 3, where Lk (Uk) is the lower (upper) limit for
the kth fuzzy goal Gk(x).

Usually, limits Lk and Uk are either subjectively chosen by decision
makers or associated with tolerances in a technical process. The choice
Fig. 1. Gk xð Þ e≤gk .
of tolerance limits is very important as they directly influence the per-
formance of the model optimization.

Fuzzy goals can be identified as fuzzy sets defined over the fea-
sible set with a membership function. Linear membership func-
tions are the most adopted functions, both in theoretical and in
practical works (Jamalnia and Soukhakian, 2009). For the above
three types of fuzzy goals here are the following linear membership
functions:

μZk xð Þ ¼

1 if Gk xð Þ≤gk
Uk−Gk xð Þ
Uk−gk

if gk≤Gk xð Þ≤Uk

; k ¼ 1;…;m
0 if Gk xð Þ≥Uk

8>>>><
>>>>:

ð4Þ

μZk xð Þ ¼

1 if Gk xð Þ≥gk
Gk xð Þ−Lk
gk−Lk

if Lk≤Gk xð Þ≤gk

; k ¼ mþ 1;…;n
0 if Gk xð Þ≤Lk

8>>>><
>>>>:

ð5Þ

μZk xð Þ ¼

0 if Gk xð Þ≤Lk
Gk xð Þ−Lk
gk−Lk

if Lk≤Gk xð Þ≤gk

; k ¼ nþ 1;…; l
Uk−Gk xð Þ
Uk−gk

if gk≤Gk xð Þ≤Uk

0 if Gk xð Þ≥Uk

8>>>>>>>><
>>>>>>>>:

ð6Þ

According to Chang (2007), since Narasimhan (1980) has applied
the FS set theory with a preference-based membership function to GP,
many achievements have beenmade in areas related to Fuzzy Goal Pro-
gramming (FGP), including preemptive, weight additive, and stochastic
models. As proposed by Yaghoobi and Tamiz (2007), a FGPmodel based
Fig. 3. Gk(x) ≅ gk.
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on the MINMAX approach (due to Flavell, 1976), can be expressed
by:

Max μ ð7Þ

S. t:

f i xð Þ−dþi ≤bi; i ¼ 1;2;…; i0 ð8Þ

f i xð Þ þ d−i ≥bi; i ¼ i0 þ 1;…; j0 ð9Þ

f i xð Þ þ d−i −dþi ¼ bi; i ¼ j0 þ 1;…;K ð10Þ

μ þ 1
ΔiR

d−i ≤1; i ¼ 1;…; i0 ð11Þ

μ þ 1
ΔiL

dþi ≤1; i ¼ i0 þ 1;…; J0 ð12Þ

μ þ 1
ΔiL

d−i þ 1
ΔiR

dþi ≤1; i ¼ j0 þ 1;…;K ð13Þ

μ ;dþi ;d
−
i ≥0; i ¼ 1;…;K ð14Þ

X∈F F is a feasible set ð15Þ

where, in the notation proposed by Yaghoobi and Tamiz (2007), bi is the
aspiration level for the ith goal, ΔiR and ΔiL indicates, respectively, the
admissible violations to the right and left for the ith fuzzy goal; Cs is an
optional set of rigid (inviolable) constraints, di− and di

+ are the negative
and positive deviation variables for the ith goal, fi(X) is the objective
functions and μ is a degree achievement fuzzy function with 0 ≤ μ ≤ 1,
standardized and dimensionless, is associated with each objective
function.
Fig. 4. Resear
3. Research method

The research phases illustrated in Fig. 4 are explained in the
sequence:

– Problem identification—Milling companieswere visited and onewas
chosen to be the object of study (case). A revision of the technical lit-
erature was also made focusing on the production of sugar, alcohol,
molasses and sub-products, in order to understand the elements and
set the scope of the problem (see Section 4);

– Data collection — Data were collected internally, and members of
staff (managers and engineers) were interviewed in order to double
check the quality of the available information. Some of these data are
not presented here due to confidential information;

– Modeling — The multi-objective mathematical modeling was devel-
oped for the case, incorporating the harvest season and periods
between harvests, accounting for 52 weeks of milling activities
(see Section 4);

– Experiment— The data collected in (b) were used tomodel the prob-
lemwith the software GAMS— General Algebraic Modeling System,
version 24.2.1, while the Solver CPLEX 12.6 was used in order to find
an optimum solution for the model (see Section 5);

– Validation — Performed with the support of technical professionals
(specialists) of the studied company. The specialists analyzed the re-
sults of themodel solution and compared themwith the real results
for the last harvest, in order to check coherence and applicability of
the model results;

– Implementation — This phase depends on the company's decision,
but it is important to emphasize that the research was considered
adequate in all its technical aspects.

4. Problem description and its modeling

4.1. Problem description

Here we present the main characteristics of the aggregate planning
problem, including logistics decisions, in a typical Brazilian Sugar and
Ethanol Milling Company (BSEMC).

The first step to understand the problemwas mapping the industrial
process. The industrial process involves the subdivisions of the sugarcane
juice flow, the use of molasses, the type of ethanol and sugar being
ch steps.



Fig. 5. Sugar, ethanol and molasses process flow (source: Paiva and Morabito, 2009).
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produced, the sugarhouse recovery efficiency, the efficiency of the distill-
ery, and the overall sucrose waste, as illustrated in Fig. 5.

Fig. 5 illustrates the nine most important unitary operations related
to the milling processes (weighing, warehouse, wash, mill, clarifica-
tion), to sugar and molasses production (evaporation, crystallization)
and to ethanol distillery (fermentation, distillation). Fig. 5 also de-
picts the waste of sucrose in every step of the industrial process
(washing, milling, clarification, undetermined, fermentation, and
distillation losses). For more details, please consult Paiva and
Morabito (2009).

A Fuzzy Goal Programming (FGP) model was developed to solve
the multi-objective aggregate production-planning problem under
uncertainty for a BSEMC. The products are sugars – Crystal, VHP, and
VVHP –, and ethanol, and the co-product is molasses.

The company's manager suggested nine objectives to be achieved:

– Minimize the costs of each agro-industrial phase:
– Supply of raw material (sugar cane);
– Sugar cane transportation;
– Production process.

– Minimize the total inventory cost;
– Minimize the total distribution cost of the products (sugars and

ethanol) to clients;
– Maximize the production of Crystal sugar;
– Maximize the production of VHP sugar;
– Maximize the production of VVHP sugar;
– Maximize the production of ethanol.

4.2. Problem modeling

The FGP model for the aggregate production-planning problem
in the sugar mill (FGP-APPSM) is formulated in the sequence,
and uses two matrices to prepare the input data before its
optimization:
- Matrix of Industrial Processes (MIP) composed by the quantity of each
product p (sugars— Crystal, VHP, and VVHP, and ethanol) produced
by each process k (weighing, warehouse, wash, mill, clarification,
evaporation, crystallization, fermentation, and distillation) for a
given period t (harvest and between harvest or 52 weeks);
– Matrix of Industrial Costs (MIC) composed by the cost of using each
process k in each period t;

Sets
k industrial processes, k ∈ K, K = {1,2,…,24};
t planning periods, t ∈ T, T = {1,2,…,52};
p final products, p ∈ P, P = {VHP, VVHP, Crystal, ethanol};
p1 production of the VHP sugar;
p2 production of the VVHP sugar;
p3 production of the Crystal sugar;
p4 production of ethanol;
m sugarcane suppliers,m ∈ M, M = {owned and rented};
f sugarcane transport providers, f ∈ F, F = {owned and

rented};
e inventory positions, e∈ E, E= {number of warehouses of the

company and rented places – own and rented};
i Clients, i ∈ I, I = {1,2,…,30};
l distributors of sugars and ethanol, l ∈ L, L = {owned and

rented};
π values of goals for the nine objectives chosen by the BSEMC, π

∈ Π, Π = {1,2,…,9}.

Parameters
Mt

min minimum milling capacity [ton/week];
Mt

max maximum milling capacity [ton/week];
CTf capacity of the transport provider f [ton/week];
αt maximum percentage of farmers' sugarcane in period t [%];
βf t availability of transport provider f in period t [%];
φt percentage of available operation time in the plant in period t

[%];
γt forecasted efficiency of milling shutdowns in period t [%];
Cestp e inventory capacity of product p in each position of storage e

[ton or m3];
L1f t variable cost of cutting, loading and transporting sugarcane

with the transport provider f in period t [$/ton];
hp e variable cost of inventory of product p in each position of

storage e [$/ton or $/m3];
hsp e cost of inventory in the after harvesting period of product p in

each position of storage e [$/ton or $/m3];
DSp t demand of product p in period t [ton or m3];
Vp t revenue of product p in period t [$/ton or $/m3];

image of Fig.�5


Fig. 7.Membership function of Z2.
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Ip e 0 initial inventory of product p in each position of storage e
[ton or m3] before starting the planning period;

Dispm 0 sugarcane harvesting forecast of the sugarcane supplier m
[ton] before starting the planning period;

M'm 0 quantity of sugarcane harvested by the supplier m [ton]
before starting the planning period;

MIPp k t Element of the Matrix of Industrial Processes (MIP) —

representing the quantity of product pmade on each industri-
al process k in period t [ton or m3];

MICk t Element of theMatrix of Industrial Costs (MIC)— representing
the cost of the industrial process k in period t [$/ton];

MACm t Element of the Matrix of Agricultural Costs (MAC) —

representing the cost associated to the sugarcane supplier m
in period t [$/ton];

CACp i l t shipping cost of product p to client i using the transport
provider l in period t [$].

Decision variables

xkt decision variable associated to the selection of the process k in
period t (xkt = 1 or =0);

mt quantity of sugarcane crushed in period t [ton];
mmt′ quantity of sugarcane sent from the sugarcane supplier m in

period t [ton];
mft

″ quantity of sugarcane transported by the transport provider f
in period t [ton];

mkt
‴ quantity of sugarcane crushed by process k in period t [ton];

xapilt quantity of product p to be delivered to client i using transport
provider l in period t [ton or m3];

dispmt availability of sugarcane in the supplierm in period t [ton];
Ipet inventory of product p in each position of storage e in period t

[ton or m3].

Auxiliary variables
dπ
+ variable of deviation of over-achievement for each fuzzy goal;

dπ
− variable of deviation of under-achievement for each fuzzy

goal;
μπ achievement degree for each fuzzy goal, and that, 0 ≤ μ ≤ 1.

In the sequence, we introduce the fuzzy concepts to obtain the FGP
model. Please note that BSEMC specialists estimated the goal values
(right-hand side values):

Goal Z1: Maximize the total Crystal sugar production [ton]:

X
p3∈P

X
k∈K

X
t∈T

m‴
k t :MIPp3 kt

e¼27;500 ð16Þ

Goal Z2: Maximize the total VVHP sugar production [ton]:

X
p2∈P

X
k∈K

X
t∈T

m‴
k t :MIPp2kt

e¼30;500 ð17Þ
Fig. 6.Membership function of Z1.
Goal Z3: Maximize the total VHP sugar production [ton]:

X
p1∈P

X
k∈K

X
t∈T

m‴
k t :MIPp1kt e¼15;500 ð18Þ

Goal Z4: Maximize the total ethanol production [m3]

X
p4∈P

X
k∈K

X
t∈T

m‴
k t :MIPp4kt e¼86;000 ð19Þ

Goal Z5: Minimize the total storage costs [$]:

X
p∈P

X
e∈E

X
t∈T

Ip e t :hp e t
e≤950;000 ð20Þ

Goal Z6: Minimize the total raw-material transport costs from the
sugarcane suppliers [$]:

X
f∈F

X
t∈T

m″
f t :L1 f t

e≤26;676;000 ð21Þ

Goal Z7: Minimize the total raw-material costs from the sugarcane
suppliers [$]:

X
m∈M

X
t∈T

m0
mt :MACmt

e≤51;400;000 ð22Þ

Goal Z8: Minimize the total raw-material processing costs [$]:

X
k∈K

X
t∈T

m‴
k t :MICk t

e≤9;500;000 ð23Þ

Goal Z9: Minimize the total distribution costs to the clients [$]:

X
p∈P

X
i∈I

X
l∈L

X
t∈T

xap i l t :CACp i l t
e≤1;700;000 ð24Þ
Fig. 8.Membership function of Z3.

image of Fig.�6


Fig. 9.Membership function of Z4.
Fig. 11.Membership function of Z6.
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The maximum and minimum limits for the deviations of each fuzzy
goal are illustrated in Figs. 6 to 14, and for more details see Figs. 1 to 3.

– Eq. (25) is the fuzzy achievement (objective) function:

Max Z ¼
X
π∈Π

μk ð25Þ

– Eq. (26) is the small bucket constraint in each period t:

X
k∈K

xk t ¼ 1; ∀t∈T ð26Þ

– Eq. (27) is the inventory balancing of final product p, for client i in
period t:

X
e∈E

Ipet ¼ I0 þ
X
e∈E

Ip e t−1 þ
X
k∈K

m
t
:MIPpkt−DACp t−xap i l t ∀p∈P;∀t∈T

ð27Þ

– Eqs. (28)–(30) are the compatibility constraints (one stage model).

X
m∈M

m0
mt ¼

X
f∈F

mf t″ ; ∀t∈T ð28Þ

X
f∈F

m″
ft ¼

X
k∈K

m‴
kt; ∀∈T ð29Þ

X
k∈K

m‴
kt ¼ mt ; ∀∈T ð30Þ

– Eq. (31) is the sugarcanem availability constraint in each period t:

dispmt ¼ dispmt−1−m0
mt−1 ∀m∈M; ∀t∈T ð31Þ

– Eq. (32) is the constraint of utilization of the sugarcane available in
the harvesting season. It is assumed that if part of the sugarcane
Fig. 10. Membership function of Z5.
planted is not available for the present season, this amount is not
taken into consideration by the model:

X
m∈M

dispmt ¼
X
t∈T

mt ð32Þ

– Inequality (33) is the capacity constraint for the quantity of sugar-
cane crushed in each period t:

Mmin
t :

ϕt

100
:
γt

100
≤mt≤Mmax

t :
ϕt

100
:
γt

100
∀t∈T ð33Þ

– Inequality (34) restricts the amount of sugarcane supplied by
farmers and by the mill owners (rent and owned, respectively)
that is going to be crushed in period t:

m0
mt≤α

t
:m

t
∀m∈M;∀t∈T ð34Þ

– Inequality (35) is the constraint over the quantity of sugarcane
transported by the mill owned transport system f in period t:

m″
ft≤

β f t

100
:
γt

100
: CT f ∀ f∈F; ∀t∈T ð35Þ

– Constraint (36) imposes that the quantity of sugarcane processed by
process k in period t (mkt

‴ ) should be zero if process k is not used (in
this case xkt = 0), and it should be less than or equal to Mt

max,
otherwise xkt = 1:

m‴
kt≤Mmax

t xk t ∀k∈K; ∀t∈T ð36Þ

– Inequality (37) is the constraint over inventory capacity of product p
in each position of storage e in period t:

Ipet≤Cestpe ∀p∈P; ∀e∈E; ∀t∈T ð37Þ
Fig. 12.Membership function of Z7.



Fig. 13. Membership function of Z8.

Table 1
Comparison between the Brazilian Sugar and EthanolMilling Company (BSEMC) planning
for 2010/2011 season and the results obtained from the FGP-APPSMmodel.
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FuzzyGoal Constraints: dπ+and dπ
− are positive andnegative deviation

variables for the ith fuzzy goal.
– Equations (38–39) are associated with the total storage costs:

X
p∈P

X
e∈E

X
t∈T

Ip e t :hp e t−dþ1 ≤976;000 ð38Þ

μ1 þ
1

950;000−900;000
:dþ1 ≤1 ð39Þ

– Eqs. (40)–(41) are associated with the total raw-material transport
cost from suppliers:

X
f∈F

X
t∈T

m″
ft :L1ft−dþ2 ≤26;676;000 ð40Þ

μ2 þ
1

26;800;000−26;600;000
:dþ2 ≤1 ð41Þ

– Eqs. (42)–(43) are associated with the total raw-material costs from
suppliers:

X
m∈M

X
t∈T

m0
mt :MACmt−dþ3 ≤51;400;000 ð42Þ

μ3 þ
1

51;600;000−51;400;000
:dþ3 ≤1 ð43Þ

– Eqs. (44)–(45) are associatedwith the total raw-material processing
costs:

X
k∈K

X
t∈T

m‴
kt:MICkt−dþ4 ≤9;540;000 ð44Þ

μ4 þ
1

9;700;000−9;500;000
:dþ4 ≤1 ð45Þ
Fig. 14. Membership function of Z9.
– Eqs. (46)–(47) are associated with the total VHP sugar production:

X
p1∈P

X
k∈K

X
t∈T

m‴
kt :MIPp1kt þ d−5 −dþ5 ¼ 15;000 ð46Þ

μ5 þ
1

15;000−13;000
:dþ5 þ 1

17;000−15;000
:d−5 ≤1 ð47Þ

– Eqs. (48)–(49) are associated with the total VVHP sugar production:

X
p2∈P

X
k∈K

X
t∈T

m‴
kt :MIPp2kt þ d−6 −dþ6 ¼ 30;000 ð48Þ

μ6 þ
1

31;000−29;000
:dþ6 þ 1

33;000−31;000
:d−6 ≤1 ð49Þ

– Eqs. (50)–(51) are associated with the total Crystal sugar produc-
tion:

X
p3∈P

X
k∈K

X
t∈T

m‴
kt :MIPp3kt þ d−7 −dþ7 ¼ 26;000 ð50Þ

μ7 þ
1

26;000−23;000
:dþ7 þ 1

29;000−26;000
d−7 ≤1 ð51Þ

– Eqs. (52)–(53) are associated with the total ethanol production:

X
p4∈P

X
k∈K

X
t∈T

m‴
kt :MIPp4 k t

þ d−8 −dþ8 ¼ 85;000 ð52Þ

μ8 þ
1

86;000−84;000
:dþ8 þ 1

88;000−86;000
:d−8 ≤1 ð53Þ

– Eqs. (54)–(55) are associatedwith the total raw-material processing
costs:

X
p∈P

X
i∈I

X
l∈L

X
t∈T

xap i l t :CACp i l t−dþ9 ≤1;700;000 ð54Þ

μ9 þ
1

1;700;000−1;500;000
:dþ9 ≤1 ð55Þ

– Expression (56) represents the integrality and non-negativity
Results (a) FGP-APPSM (b) BSEMC Difference

Production of Crystal
sugar [ton]

26,956 24,400 10.48%

Production of VHP
sugar [ton]

14,500 13,780 5.22%

Production of VVHP
sugar [ton]

31,854 29,820 6.82%

Total production
of sugars [ton]

73,310 68,000 7.81%

Production of AEHC [m3] 85,800 84,360 1.71%
Total ART [kg/ton] 207.30 207.17 0.063%
Total sugarcane ART [kg/ton] 223.8 223.7 0.045%
Final industrial efficiency [%] 90.8 90.3 0.55%
Revenue [$] ($) 33,305,891.36 ($) 31,196,975.80 6.76%



Table 2
Results for the fuzzy goals.

Goal π μ

Maximize production of Crystal sugar [ton] 1
Maximize production of VHP sugar [ton] 1
Maximize production of VVHP sugar [ton] 0.8
Maximize production of AEHC [m3] 1
Minimize the total ART [kg/ton] 1
Minimize the total storage costs 1
Minimize the total raw-material transport costs from sugarcane suppliers 1
Minimize the total raw-material processing costs 1
Minimize the total distribution costs to clients 1
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constraints:

x
k t
∈ 0;1f g; m

t
≥0;m0

mt≥m″
ft≥0;m‴

kt≥0;dispmt≥0; Ip e t≥0; xap i l t≥0;

dþπ ; d
−
π ≥0;∀p∈P;∀e∈E;∀k∈K;∀m∈M;∀t∈T;∀ f∈F;∀i∈I;∀l∈L;∀π∈Π

ð56Þ

5. Results of the FGP model application in a real case

The BSEMC — Brazilian Sugar and Ethanol Milling Company, sit-
uated in the Southeast region of Brazil, is able to produce various
types of sugar: VHP, VVHP, Crystal; one of the main types of fuel:
hydrated ethanol (AEHC); a sugarhouse co-product: molasses; be-
sides some sub-products such as filter mud, bagasse, vinasse and
fusel oil.

In a typical harvesting season, the BSEMC crushes 1.8 million tons of
sugarcane and produces 150,000 tons of sugar and 1,000,000 m3 of
ethanol. The present case study was carried out using data from the
2010/2011 harvesting and between harvest seasons, and the aim
was to analyze if the proposed FGP-APPSM model could improve
the corresponding aggregate production planning.

Themodel resulted in 5530 variables,where 1248were binary, 9682
constraints, and 41,233 nonzero elements. For the real application of the
FGP-APPSM model, an Intel (Core i7) 1.26 GHz processor, with 8 GB
RAM and operational system from Microsoft 64 bits was used, and the
model was solved using the modeling language GAMS 24.2.1 with the
optimization solver CPLEX 12.6. The total elapsed real time was 2.2 h.
Some of the results are in Table 1.

In analyzing Table 1, we can observe that the model results recom-
mend a higher production of ethanol than sugar; and that the VVHP
sugar has preference over Crystal and VHP sugar.

Another observation in Table 1 concerns the overall industrial effi-
ciency: both plans involved almost the same values (see difference of
0.55%), which means that technically the model solution is close to
the reality of the FGP-APPSM.

However, the most important result in Table 1 is the total value of
the variable revenue. In analyzing such important aspect we conclude
that the total variable revenue associated with the FGP-APPSM model
is 6.76% higher than the result obtained by the planning of the FGP-
APPSM for the same season.

These results encourage the use of the FGP-APPSMmodel to support
decisions in the aggregate production planning and in the logistics of
Sugar and Ethanol Milling Companies. Managers could adopt a rolling
strategy, for the planning horizon, to solve the FGP-APPSMmodel, con-
sidering all weeks of the harvesting season, and then, as soon as each
subsequent week data are available, do a data upgrading and solve the
model one more time for the remaining weeks until the end of the
season.

With this strategy, the aggregate production-planning problem and
its analysis become a routine and the impact of data uncertainty is
minimized. This strategy was applied in the FGP-APPSM using data
from the 2010/2011 seasons with excellent results, according to
BSEMC managers.

After themodel optimization only the fuzzy goal associatedwith the
production of the VVHP sugar was not fully satisfied, presenting a value
of 0.8; the other fuzzy goals had values equal to 1, in other words, the
other fuzzy goals were fully satisfied, as shown Table 2.

The final validation of the FGP-APPSM model was made with the
support of the BSEMC administrativemanager. He compared the results
of the model with the plant's actual results for the 2010/2011 season,
and concluded that the proposedmodel can be applied to the aggregate
production-planning problem, once it has established feasible and con-
sistent production plans for all the analyzed periods.

A fact praised by the manager was that the model development
allowed a better understanding of the decision variables and the param-
eters involved, and promoted a greater interaction between profes-
sionals of the BSEMC consulted about the agricultural, industrial and
logistics phases related to the aggregate production-planning problem
under uncertainty.

6. Conclusions and future research directions

This paper presents a Fuzzy Goal Programming (FGP) model to sup-
port decisions in the aggregate production-planning under uncertainty
in sugar and ethanol milling companies. The FGPmodel provides useful
information for decisionmakers, helping them to better understand the
variables and the important issues involved in the problem. In fact, the
proposed model provides an effective analysis of these issues, offering
more reliable andmore precise outputs, from technical and economical
perspectives.

Other advantages of the FGP-APPSMmodel are:

– It facilitates the analysis of different scenarios in decision-making
processes, replacing subjective, incomplete, and under uncertainty
judgments;

– It supports managers in the analysis of the results obtained in the
aggregate production-planning and how to work with unexpected
situations;

– It encourages an integration of decisions in the agricultural, and
industrial stage, and in the logistics distribution of final products to
meet marketing requirements.

It is worth saying that sucroenergetic industries have similar pro-
cesses, this way, the FGP model proposed here may be easily used in
other plants. However, so that this model can be applied in other
sucroenergetic industries, managers shall balance goals, that is, the per-
tinent uncertainties to each fuzzy goal, once these goals depend on
weather conditions and on sugarcane varieties, which may be different
in each region of the country, as well as, on the company's production
and sales strategy.

The results of this study are promising and encouraged us to continue
this research. Nowadays, we are developing new models that:

– Incorporate the production of energy using sugarcane bagasse;
– Allow the analysis of the application of the Response Surface

Methodology (MONTGOMERY, 2005) to the design of the raw
material mixture in industrial processes in order to improve yields
and costs;
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