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Abstract—Motion detection, the process which segments mov-
ing objects in video streams, is the first critical process and
plays an important role in video surveillance systems. Dynamic
scenes are commonly encountered in both indoor and outdoor
situations and contain objects such as swaying trees, spouting
fountains, rippling water, moving curtains, and so on. However,
complete and accurate motion detection in dynamic scenes is
often a challenging task. This paper presents a novel motion
detection approach based on radial basis function artificial neural
networks to accurately detect moving objects not only in dynamic
scenes but also in static scenes. The proposed method involves
two important modules: a multibackground generation module
and a moving object detection module. The multibackground
generation module effectively generates a flexible probabilistic
model through an unsupervised learning process to fulfill the
property of either dynamic background or static background.
Next, the moving object detection module achieves complete
and accurate detection of moving objects by only processing
blocks that are highly likely to contain moving objects. This
is accomplished by two procedures: the block alarm procedure
and the object extraction procedure. The detection results of
our method were evaluated by qualitative and quantitative
comparisons with other state-of-the-art methods based on a wide
range of natural video sequences. The overall results show that
the proposed method substantially outperforms existing methods
with Similarity and F, accuracy rates of 69.37% and 65.50%,
respectively.

Index Terms—Dynamic background, motion detection, neural
network, video surveillance.

I. INTRODUCTION

IDEO surveillance systems are required to facilitate a

wide range of applications in computer vision, including
human activity understanding [1], [2], traffic monitoring and
analysis [3], [4], endangered species conservation, and so on
[5]12]. Many functions are involved in video surveillance
systems. These include, but are not restricted to, motion detec-
tion, object classification, tracking, behavior recognition, and
activity analysis. Motion detection, which is the segmentation
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of moving objects in video streams, is the first relevant step
and plays an important role in video surveillance systems.

Numerous approaches have been proposed to achieve com-
plete and accurate motion detection [13]-{39]. The three major
categories of conventional motion detection approaches are
optical flow, temporal difference, and background subtraction
[13]. Optical flow [14], [15] can achieve robust detection
by projecting motion on the image plane with proper ap-
proximation. However, it is very sensitive to noise and not
computationally affordable for real-time applications. Tempo-
ra difference [16]{18] detects moving objects by calculating
the difference between consecutive frames and can effectively
accommodate environmental changes. Nevertheless, the ex-
tracted shapes of moving objects are generaly incomplete,
especialy when the moving objects in a scene are stationary
or exhibit slow motion. Background subtraction [19]-{39] isa
particularly popular method for motion detection. It detects
moving objects by subtracting the current image from the
reference background model of the previous image. This mode
of detection has attracted the most attention due to the ability
of this approach to extract moving objects while exhibiting
only moderate time complexity. However, motion detection by
background subtraction usually results in incomplete detection
results of moving objects due to faulty background model
generation. This can be especialy aggravating when detecting
moving objects in dynamic scenes [29]-{39].

Use of the Gaussian mixture model (GMM) has been
proposed to model dynamic backgrounds for detecting moving
objects [29]. It is the most widely used approach for motion
detection applied to dynamic scenes. This approach models
each pixel independently with a mixture of Gaussians and is
updated by an online approximation. Several methods have
been proposed to improve the classical GMM [30]—{35]. Most
of these methods incorporate GMM into other well-known
approaches such as optical flow and temporal difference [30],
or improve the learning and parameter updating techniques
[31]{35]. Although the results show improvement, their com-
putational complexity is still relatively high.

In [36], a new background subtraction method is proposed
to solve dynamic background problems by employing a real-
time dynamic background generation technique. This tech-
nique, based on a temporal median filter with exponentially
weighted moving average filtering, can detect moving objects
automatically with a low computational complexity.

The self-organizing background subtraction (SOBS) method
uses the architecture of a self-organizing neural network map
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to build a background model for detection of moving objects
in complex environments [37]. A self-organizing neuronal map
consisting of (3 x 3) weight vectors is used to construct the
background model for each color pixel. However, this creates
considerable memory and computational time requirements.

A highly compressed background model is obtained through
application of the quantization/clustering technique by the use
of the codebook background (CB) subtraction method from
training sequences during long observation periods [38].

Unlike the methods mentioned above, the visual background
extractor (ViBe) method constructs a background model by
examining a set of pixel values taken either in the past or in the
corresponding neighborhood. Moving objects are then detected
by determining the differences between the background model
and the current incoming pixel [39].

In contrast to the previously mentioned methods, this paper
presents a novel motion detection approach based on the radial
basis function (RBF) [40] artificial neural networks in order
to segment moving objects in dynamic scenes. This method
can effectively adapt to environmental changes and achieve
accurate and complete detection in both dynamic and static
scenes. Basically, the RBF neural network possesses the strong
nonlinear mapping ability and the local synaptic plasticity of
neurons with a minimal network structure. This alows it to
be suitable for motion detection application in either dynamic
or static scenes.

The remainder of this paper is organized as follows.
Sections I presents a survey of severa state-of-the-art related
published works used in our comparison. Our motion detection
method is described in Section I11. The experimental results
of our method then are compared with those of other state-of-
the-art methods in section 1V. Finally, Section V presents our
conclusions.

II. RELATED WORK

In the following section, we describe five state-of-the-art
methods for motion detection in dynamic scenes: a rea-
time dynamic background generation method (RDBG) [36],
a GMM [29], a SOBS [37], a CB subtraction method [38],
and a visual background extractor method (ViBe) [39].

A. Real-Time Dynamic Background Generation

The RDBG [36], utilizes two bitmaps, B- and B’ to
generate the adaptive background model. The B bitmap holds
the generated adaptive background model, while BS holds the
last frame from the camera. Each pixel in B has a long term
timer TX(x, y) and a short term timer 75(x, y). The TZ(x, y)
timer is used to count the number of frames, in which the
pixel of BE(x, y) features similar values. When the difference
between BL(x,y) and the incoming pixel value I,(x,y) is
within the predefined tolerance , the long term timer T (x, y)
isincreased and B (x, y) is replaced with the incoming pixel
value I,(x, y).

The T5(x, y) timer is used to count the number of frames, in
which the incoming pixel value 7,(x, y) differs from B (x, y).
When the difference between BZ(x, y) and the incoming pixel
value I,(x, y) exceeds the predefined tolerance, the pixel value
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of B¥(x,y) is replaced by incoming pixel value I(x, y).
Concurrently, if the incoming pixel value I,(x, y) differs from
BS j(x,y), T5(x, ) is reset to zero. Otherwise, T5(x, y) is
increased.

Thus if a pixel is covered by a new object, TX(x, y) will
stay the same and T5(x, y) will increase. When T5(x, y) is
greater than T (x, y), the new incoming pixel value I,(x, y) is
assumed to be part of the background. In this case, the pixel
values of BL(x, y) and B3(x, y) are replaced by the incoming
pixel value I,(x, y), and T5(x, y) is reset to zero.

B. Gaussian Mixture Model

Use of the GMM method involves modeling [29] each pixel
independently with a mixture of k¥ Gaussians to maintain
the probabilistic background model. The probability density
function for the current pixel value is given by

k

P(X,)= Z Wi N (Xta Hits 2:i,z) 1)
i=1

where X, is each incoming pixel intensity value of the rth
image frame, and w;, is a estimation of the weight for the
corresponding Gaussian distribution n(X;, w;,, %), which
can be expressed as follows:

—((X = ) /DX —
n (th Wi Ei,t) = itz 2'[;”)/212112/; ( =2
(2

where u;, and X;, are the mean value and the covariance
matrix of the ith Gaussian in the mixture model, respectively.
The covariance matrix X;, is assumed as follows:

Ek.t = O']%I (3)

Note that each pixel is checked against the k existing
Gaussian distributions. If the pixel value is within 2.5 standard
deviations of a distribution, the statement can be assumed as a
match. The adaptive parameters of the first matched Gaussian
model can be updated as follows:

o = (1 — o) wp -1 + My, 4
e =0 = p) 1+ pX, 6)
5[2 =(1-p) 8[271 +p(X, — IJ«t)T (Xt - Mt) . (6)

The parameter My, is 1 if the pixel matches the models;
otherwise, it is set to 0. The adaptive background models are
then obtained through the value w/o of each Gaussian, and
the first B distributions are determined as follows:

b
B = argmin <Z wp > Tz) )

k=1

where T is the minimum portion of the data that should be
classified as background.
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C. Sf-Organizing Background Subtraction

The SOBS method [37] consists of two basic steps. First,
the initial background model is constructed by mapping each
original image pixel to a (3 x 3) matrix of neuronal map
structure. Second, the best match background candidate is
found within the (3 x 3) matrix of each incoming pixel by
a fixed threshold

d(en p ) = Min dcpr) s (@

where p,(x, y) is the incoming pixel, ¢; is the ith candidate
in the (3 x 3) matrix, and ¢,, is the best match. If no best
match is found for incoming pixel p,(x, ), then p.(x, y) is
deemed part of amoving object; otherwise, p;(x, y) isregarded
as a background pixel. If the best match ¢, is located at
position (x, ) in the background model, the background model
is updated as follows:

A, ) = (1= i j(0) Arcali J) + i j(0)pilx, y) st

. o - C)
i=x—1..x+1, j=y-1...y+1

where A is the neuronal map background model, and « is the
learning rate.

D. Codebook Background Subtraction

The CB method [38] models the background by employing
a quanti zation/clustering technique based on observations over
along period of time. A codebook consisting of one or more
codewords was generated for each pixel as follows:

C={c,Cy...,CL} (20
where C is the codebook consisting of L codewords, ¢; is the
ith codeword consisting of a RGB vector v; and a tuple u; that
can be presented as (R;, G;, B;) and (IM", IM™ £ %:, pi, 4i),
respectively.

Note that the /™" and 1™ are the respective minimum
and maximum brightness intensity values of the codewords. f
represents the frequency at which the codeword has occurred.
A is expressed as the longest interval of the training period,
in which the codeword has not recurred. p and ¢ are used to
record the first and last access times, respectively.

When there are an input pixel x; = (R, G, B) and a RGB
vector v; of a codeword ¢;, they can be described as follows:

lx,1? = R? + G* + B? (11)
lvill? = R? + G? + B? (12)
(x, v:)2 = (RiR + G:G + B;B)’. (13)
Thus, the color distortion § can be obtained by
p® = ||x,[?cos?0 = “ﬂ’;j";)z (14)
color dist (x,, v;) = 8 = \/m (15)

where v; is the RGB vector of the codeword ¢; and § is
the color distortion between x, and v;. The logical brightness
function is defined as follows:

true, iflow < ||lx/|| < I

false, otherwise - (16)

brightness (1, (1, 1)) = {
Moreover, the range [ iow, Ini] for each codeword is defined
as follows:

Liow = ol (17)

LT
Ini = min{B1, —} (18)
o
where o and B are the predefined parameters. Typicaly, o
ranges between 0.4 and 0.7, and S ranges between 1.1 and 1.5.
Finally, the detection result can be attained via two conditions
as follows:

color dist (x, c,,) < €2, (19

brightness (I, (I, i,,,)) = true (20)

where ¢, is the detection threshold, and ¢,, is the codeword
of the background. If the incoming pixel fits within these two
conditions, it is regarded as a background pixel; otherwise, it is
part of a moving object. According to experiments conducted
in previous studies [38], the average number of codewords per
pixel for background acquisition is 6.5.

E. Visual Background Extractor

The ViBe approach [39] detects moving objects by calcu-
lating the difference between the background model M and
the incoming pixel p(x, y). Initialy, the background model is
initialized from the first frame. The rth background sample
M (x, y) is randomly chosen by N neighboring pixels in the
8-connected neighborhood of location (x, y).

Second, a good match occurs when the Euclidean distance
between M’ (x,y) and p(x, y) is lower than a predefined
threshold R. If the number of occurrences of good matches
is larger than or equal to the given threshold #m,, then the
current pixel p(x, y) is classified as background. Otherwise,
p(x, y) is regarded as a foreground pixel.

Finaly, if p(x, y) is determined to be a background pixel,
then two randomly chosen background samples—one at lo-
cation (x, y) and the other at a location in the 8-connected
neighborhood—are replaced by p(x, y).

III. PROPOSED RBF-BASED APPROACH

In general, most existing methods can work well for static
scenes. However, complete and accurate motion detection
in dynamic scenes, such as those containing swaying trees,
spouting fountains, rippling water, and so on, is still a very
difficult task [18]. The main reason for this is the inherent
difficulty in discrimination between moving objects and the
dynamic background caused by the intensity fluctuations of
both background and foreground pixels [28].
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Fig. 1. Intensity variations of dynamic and static background pixels. (a)—c)

100th, 201th, and 208th frames of sequence CAM with two pixels marked by
white and black points. (d)—(f) Intensity variationsin H, S, and V components,
over time, of the sampled background pixels.

For example, as shown in Fig. 1, two pixels marked by white
and black points are sampled to plot their intensity variations
in hue (H), saturation (S), and value (V) components for
300 frames of a sample seguence. The white point belonging
to the waving tree is regarded as a dynamic background
pixel in Fig. 1(a8)—(c). Conversely, the black point is regarded
as a static background pixel. In Fig.1(b) and (c), a vehicle
passes through the dynamic background pixel and the static
background pixel, respectively. Fig. 1(d)—f) shows the plots
of intensity variations of two sample pixels marked by white
and black points for H, S, and V components, respectively. It
is obvious that the signals of the static background pixel are
stable, allowing easy extraction of the moving object when
the vehicle passes through. However, due to frequent signal
oscillations, it is difficult to discriminate between the signal
of the moving object and that of the dynamic background.

In this section, we propose a novel motion detection ap-
proach based on RBF artificial neural networks. This pro-
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Input layer Hidden layer Output layer

Fig. 2. Radial basis function neural network.

Input original sequence

Multi-background generation

Euclidean distance
calculation

|

Flexible probabilistic
background candidates

'

Moving object detection
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Y

Object extraction

v

Output detection result

Fig. 3. Overview of the modules involved in the proposed method.

cess extracts moving objects from dynamic scenes and static
backgrounds in order to effectively avoid misjudging dynamic
backgrounds as moving objects. The RBF neura network
shown in Fig. 2 consists of an input layer, a hidden layer, and
an output layer. It has certain advantages that include simple
network configurations, fast learning speed by locally tuned
neurons [40], and good approximation properties [41].

As shown in Fig.3 our approach involves two important
modules. a multibackground generation module and a mov-
ing object detection module. The proposed multibackground
generation (MBG) module generates a flexible probabilistic
background model automatically by calculating the Euclidean
distance [42] from each incoming pixel to the corresponding
reference background candidates; it then relays this infor-
mation to the network as hidden layer neuron centers. The
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Fig. 4. A scene with a dynamic background pixel and a static background
pixel. The white point is the dynamic background pixel whose dynamic range
can be expressed by three different candidates. The black point is a static
background pixel which requires only a single candidate.

probabilistic background model can express the dynamic range
of each pixel within the background and is used to construct
a hidden layer in the RBF network structure.

After employing the MBG module, the proposed moving
object detection (MOD) module is employed. The MOD mod-
ule accomplishes complete and accurate detection of moving
objects by using two procedures; a block alarm procedure and
an object extraction procedure. The block alarm procedure
eliminates unnecessary examination of the dynamic and static
background region, after which the object extraction proce-
dure processes those blocks that have a high probability of
containing moving objects.

A. Multibackground Generation

In this section, three perceptual variables, hue (H), satura
tion (S), and value (V) of the input layer are built in HSV color
space that is very similar to human visual capability [43]. Let
(h, s, v) represent hue, saturation, and value component values
of a pixel p:(x, y) in each incoming frame I,.

A sufficient number of hidden neurons can improve the ac-
curacy. Nevertheless, too many neurons may result in enlarge-
ment of the network structure and reduction in performance
quality. Therefore, it is very important to construct a proper
flexible probabilistic background model that can represent the
hidden neurons.

In order to construct a proper flexible probabilistic back-
ground model, each incoming pixel intensity value p,(x, y) of
the rth frame I, is compared to the corresponding candidates
of background intensity values B(x, y); to B(x, y),. If the
intensity of incoming pixel p,(x, y) is close to the related
candidates of background intensity—e.g., if the incoming pixel
belongs to the background candidates—we update the related
background candidates; otherwise, p,(x, y) is declared as a
new background candidate.

To determine whether or not the incoming pixel p:(x, y)
is close to the related candidates of background intensity, we
employ the Euclidean distance of vectors in the HSV color
hexcone [42]. This is calculated using the distance from pixel
pi = (hi, si, v;) to pixel p; = (h;, s;,v;) by

d(pi, p;) = l(vis; cos(h;), vis; Sin_(hi), v;)—
(ijj COS(/’lj), VS Sln(hj), UJ)HE ’
Use of this metric can circumvent problems in the period-
icity of hue and the unsteadiness of hue for small saturation
values [42].

(21)

An empirical tolerance, ¢, is used to determine whether or
not incoming pixel p,(x, y) belongs to background candidates
B(x, y)i, where k € {1, n}. This decision rule can be expressed
as

€ Blx, y)i, if d(pi(x, y), B(x, y)) < €

pi(x.3) { ¢ B(x, y)i, otherwise.

Background candidates close to incoming pixel p,(x, y) are
updated by

B(x, y), = (1= B)B(x, y)« + Bpi(x. y)

where B(x, y)i, B(x, y); are the original and updated kth can-
didates at position (x, y), and g is a predefined parameter. Fig.
4 illustrates candidates of background intensity from dynamic
and static areas. This background construction approach can
be regarded as an unsupervised learning process of the centers
location in the RBF network.

(22)

(23)

B. Moving Object Detection

1) Block Alarm Procedure: The structure of the RBF
network considered here consists of three input neurons,
one output neuron, and a hidden layer of M neurons. The
MBG module determines the number M and center points
Cy, ..., Cy of the hidden layer neurons in the RBF network,
as shown in Fig.2; it aso determines the structure of the
network. After structure determination, the HSV components
(h, s, v) of the incoming pixel p,(x, y) are used as the input
vector. The input neurons propagate the input vector to the
hidden layer neurons. After Euclidean distances between the
input vector and center points of the hidden neurons are
calculated, the output of each hidden neuron is generated by
the basis function as follows:

zi(p) = ¢(llp — Cill), where i =1,2,... . M, (24)

where ¢(-) is the basis function, C; is the center point of the
ith neuron, p is the input vector, M is the number of hidden
neurons, and || p — C;|| is the Euclidean distance between p
and C;.

Several types of basis functions are commonly used such
as the Gaussian function, linear function, cubic function, thin
plate spline function, and so on [44]. For our approach, we use
the most common basis function that is the Gaussian function
[45]. The representative function is as follows:

—lp— Cill?
202

where o is defined as ¢, and € is the empirica tolerance
of Euclidean distance in (22). The reason for this is that a
lower € value correlates to the generation of more background
candidates in the probabilistic model. Lower standard division
o values can make the Gaussian curve more gradual. This can
later prevent the summation in the output layer from getting
too high and misudging dynamic background. Therefore, o
is in proportion to €. According to our experiment, o can be
empirically defined as e.

Because the Gaussian function is factorizable and localized
[45], [46], it is suitable for our application. Moreover, the

olp - Cil) = exp( (25)
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Gaussian function can be used to provide afinefit for checking
the block state empirically. The larger the output value of basis
function is, the more closely the input vector is located to the
center points—e.g., the higher the probability of the incoming
pixel being background. In order to eliminate unnecessary
examination of the dynamic and static background region, the
incoming frame is split into wxw blocks. The calculation of
the sum of basis functions within each block is as follows:

M
5= > ¢llp—Cil)

pen i=1

(26)

where p is each independent pixel of the corresponding block
u, M is the number of hidden neurons, and the block size w
can be set to 4.

When the calculated sum of block (i, j) exceeds athreshold
S, the block A(Z, j) is labeled with O, which indicates that it
does not contain pixels belonging to moving objects. Other-
wise, block A(i, j) is labeled with 1, meaning that it is highly
probable that it contains pixels of moving objects

. ~n_ | Oifé=S8
A(, J)_{ 1, otherwise *

(27)

Table |, illustrates the sum of basis functions within blocks
in a sampled video frame. By setting S equal to 12, blocks
that may possibly contain moving objects can be detected.

Finally, the background candidates are updated in the hidden

layer by

B(x, y)i L if pi(x,y) ¢ B(x, y)i t

ap,(x, y) + (L — @) B(x, y); %, otherwise (28)

B(x, y) = {
where B(x, y):"%, B(x, y), are the kth candidates at position
(x, y) of the previous and current flexible background models,
and « is a predefined parameter. The decision rule of whether
pi(x, y) belongs to B(x, y)}j1 is determined according to (22).

2) Object Extraction Procedure: After the block alarm
procedure, unnecessary examinations are eliminated and the
object extraction procedure processes only blocks containing
moving objects. As the last step of our approach, the output
layer of the RBF network is used to compute the binary
motion detection mask as the detection result. The output layer
computes a function of the weighted linear combination of the
values emerging from the hidden layer as follows:

M
F = wi(zi(p)) +wo (29)

i=1
where w; is the weight that connects the ith hidden neuron and
the output layer, z; is the output value of ith hidden neuron,
and wy is a fixed threshold. Initially, w; is experimentally set
to 1. The binary motion detection mask is obtained as follows:

D(x. y) :{ 1Lif F(x,y) <0

0, otherwise
To label D(x, y) with 1, means that pixel p,(x, y) is part of
amoving object; otherwise, p;(x, y) is part of the background
and is labeled with 0. After finishing operations for the current
incoming frame, we adjust the weights for operations for

(30)
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TABLE |
SUM OF BASIS FUNCTIONS WITHIN BLOCKS IN A VIDEO FRAME
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Fig. 5. Flowchart of proposed RBFMD approach.

the next incoming frame. In the beginning, all weights are
initialized to 1, after which the weights are adjusted as follows:
M

t.+1 = t.+ ) T —

wi = (w; + - 2i) My S

where w! is the weight among the output layer and ith hidden

neuron at frame I;, n isthe learning rate, and M is the number
of hidden neurons.

After weight adjusting, the weights among the output layer
and the hidden neurons that are close to the input vector
are reinforced, and the others are decreased. Fig.5 shows
the flowchart of the proposed RBF-based motion detection
approach (RBFMD).

(31)

IV. EXPERIMENTAL RESULTS

The intention of this section is to present a comparison
between our RBFMD method and several other state-of-the-art
methods. Experimental results of object extraction performed
by the RBFMD method were analyzed through qualitative and
quantitative comparisons with other state-of-the-art methods
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TABLE Il
SPECIFIC PARAMETER VALUES OF RBFMD

B € S o wo n
03| 02| 12| 01 | —07 | 0.01
TABLE Il

NUMBER OF TRAINING FRAMES ADOPTED IN RBFMD

CAM | FT
150 150

WS
150

MR | M&A | IR
300 40 50

for several natural video sequences representative of dynamic
and static scenes.

Seguences CAM, WS, FT, and MR were employed to test the
results of object extraction from dynamic backgrounds. The
first sequence, CAM is of moving vehicles and pedestrians in
front of waving trees. The second segquence, WS is of a person
walking at a waterfront where a rippling water surface can be
seen in the background. The background dynamics in the third
sequence (FT) are caused by an active water fountain. The
fourth sequence, MR was captured in a meeting room where
the background curtain was moving in the wind.

Two additional sequences were utilized in order to gauge
detection results regarding static backgrounds. Sequence MSA
is of a person walking in a corridor and features objects
stopping temporarily. Sequence IR was taken in an initially
vacant meeting room with one person entering and slowly
walking around.

All the parameters in each method are set to the optimum
values. According to [36], the predefined tolerance T of RDBG
method can be set to 5. For maintaining the probabilistic back-
ground model by the use of GMM, the humber of Gaussians
components k is fixed to 3 with the learning rate « equal to
0.001 [29]. The literature [37] of the SOBS method indicates
that the learning rate « is obtained by predefined constants ¢;
and ¢, which range over 0.01 to 1.0. Moreover, the threshold
€1 and e, ranges from 0.1 to 0.2 and 0.01 to 0.07, respectively.
According to [38], the minimum and maximum brightness of
all pixelsin the CB method are derived from typical values «
and 8, which range from 0.4t0 0.7 and 1.1 to 1.5, respectively.

In regard to the ViBe method [39], the number of back-
ground samples per pixel N can be set to 20, the number of
times matches occur, #min, can be set to 2 for determination of
a background pixel. The predefined threshold of the Euclidean
distance R is set to 20. Specific values of all parameters and
the numbers of training frames of the RBFMD method are
shown in Tables Il and IlI.

We subsequently evaluated the memory requirement of the
probabilistic background model generated by the RBFMD
method and compared it to the probabilistic background mod-
els of other methods. Finaly, to verify the computational fea
sibility for real-time applications, we measured the processing
speed of the RBFMD method.

A. Quantitative Evaluation

In order to objectively evaluate the accuracy of binary
objects masks detected by RBFMD and other state-of-the-art
methods, quantitative evaluations through Recall, Precision,

F1, and Similarity metrics [27], [47]-{52] were utilized on
the test video sequences.

Recall provides the percentage of detected true positives by
a comparison with the total count of items in the ground truth

(32)

where #p is the total count of true positive pixels, fn is the
total count of false negative pixels, and (fp + fn) represents
the total count of items in the ground truth.

Precision provides the percentage of detected true positives
by a comparison with the total count of items in the binary
objects mask detected by the method

Recall = tp/(tp + fn)

Precision = tp/(tp + fp) (33

where fp is the total count of false positive pixels, and (zp +
/p) represents the total count of detected items in the binary
objects mask.

Nevertheless, Recall selectively measures only the incorrect
association of interna lost items to moving objects, and
Precision selectively measures only the incorrect association
of superfluous detected items. Accordingly, using the above
mentioned metrics alone cannot offer a satisfactory compari-
son between the different methods.

In order to facilitate an effective measurement, accuracy
was evaluated in terms of two additional metrics—F; and
Similarity. Use of these two metrics was accomplished by
weighting the harmonic means of Recall and Precision

F1 = 2(Recall)(Precision)/(Recall + Precision) 39

Similarity = tp/(tp + fp + fn). (35)

All attained values through the above considered metrics
range from O to 1, with higher values meaning greater accu-
racy.

Average accuracy vaues for all test sequences were ob-
tained through utilizing the above four metrics. These were
generated by GMM [29], RDBG [36], SOBS [37], CB [38],
ViBe [39], and RBFMD methods, and are reported in Table
IV. We can readily observe that the RBFMD method achieves
the best Similarity and F; values in comparison to other
state-of-the-art methods for the CAM, WS, FT, MR, MSA, and
IR sequences. In particular, the RBFMD method is the only
method that attains accuracy rates of al metrics exceeding
80% for the WS and MR sequences, which contain dynamic
background.

In comparison, the accuracy rates obtained through
Similarity and F; for the GMM method were up to 38%
and 34% lower than those achieved by the RBFMD method,
respectively; the accuracy rates produced by Similarity and
F; for the RDBG method were up to 45% and 44% lower
than those achieved by the RBFMD method, respectively; the
accuracy rates produced through Similariry and F; for the
SOBS method were up to 25% and 21% lower than those
achieved by the RBFMD method, respectively; the accuracy
rates produced through Similarity and F; for the CB method
were up to 39% and 31% lower than those achieved by the
RBFMD method, respectively; the accuracy rates produced
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TABLE IV
COMPARISON OF THE OBTAINED AVERAGE Similarity, Fi, Precision, AND Recall VALUES OF EACH METHOD

Sequence Evauation RBFMD GMM RDBG SOBS CB ViBe
CAM Similarity 0.6971 0.5713 0.2479 0.6649 0.6471 0.3352
Fi 0.8204 0.6546 0.3815 0.7919 0.7342 0.4865
Recall 0.7444 0.5504 0.6632 0.6904 0.7694 0.4100
Precision 0.9152 0.9266 0.3010 0.9460 0.7088 0.7054
WS Similarity 0.8119 0.5885 0.6538 0.7204 0.7958 0.6910
Fi 0.8957 0.7408 0.7900 0.8372 0.8851 0.8166
Recall 0.9129 0.6091 0.8055 0.7356 0.8240 0.7650
Precision 0.8811 0.9481 0.7778 0.9722 0.9035 0.8790
FT Similarity 0.5764 0.5427 0.3513 0.4343 0.4464 0.4049
Fi 0.7289 0.7001 0.5064 0.5986 0.6160 0.5741
Recall 0.5931 0.8063 0.6991 0.4580 0.4817 0.5417
Precision 0.9526 0.6221 0.4206 0.8795 0.8693 0.6168
MR Similarity 0.8029 0.7578 0.6824 0.5485 0.7894 0.7731
Fi 0.8885 0.8591 0.8089 0.6758 0.8819 0.8700
Recall 0.8279 0.9153 0.8419 0.5638 0.8269 0.9157
Precision 0.9662 0.8133 0.7830 0.9646 0.9455 0.8705
MSA Similarity 0.8541 0.4725 0.8158 0.8387 0.5834 0.7866
Fi 0.9211 0.5774 0.8980 0.9096 0.7338 0.8800
Recall 0.9383 0.5316 0.9357 0.9190 0.6113 0.8821
Precision 0.9010 0.8216 0.8655 0.9110 0.9260 0.9492
IR Similarity 0.8138 0.5045 0.7005 0.8025 0.4286 0.5820
Fi 0.8962 0.6404 0.8222 0.8887 0.5851 0.7318
Recall 0.9016 0.5724 0.9350 0.9229 0.4298 0.6307
Precision 0.9002 0.8176 0.7478 0.8642 0.9955 0.9052
TABLEV and static backgrounds, outperforming other state-of-the-art

AVERAGE NUMBERS OF BACKGROUND INTENSITIES PER PIXEL OF
DIFFERENT PROBABILISTIC BACKGROUND MODELS

CAM FT WS | MR | MSA IR
RBFMD | 153 | 110 | 1.34 | 1.04 | 1.01 | 1.01
GMM 35 35| 35|35 | 35 | 35
SOBS 9 9 9 9 9 9
CB 261 | 131 | 140 | 1.31 | 1.28 | 1.26
ViBe 20 20 20 20 20 20

through Similarity and F; for the ViBe method were up to
36% and 33% lower than those achieved by the RBFMD
method, respectively. It is important to note that each method
is implemented by using optimum parameters according to
previous studies [29], [36]{39] and al accuracy values of
each method are obtained by considering every frame of each
test sequence.

B. Qualitative Evaluation

Here, qualitative evaluation of the object extraction results
for different test sequence by each of the methodsis performed
viavisua inspection. The qualitative evaluation results of each
video segquence along with Similarity and F; accuracy values
of the binary object masks detected by each method are shown
in Figs.6-9. Comparing the generated binary objects masks
with the ground truths, we find that the RBFMD method
achieves robust detection not only in dynamic scenes but also
in static scenes, and that the detection results of RBFMD
are more accurate than those obtained by the GMM, RDBG,
SOBS, CB, and ViBe methods.

It is evident from the results of qualitative and quan-
titative evaluations that the RBFMD method was suc-
cessful in detection of moving objects in both dynamic

methods.

C. Multibackground Analysis

In an advanced video surveillance system, a proper back-
ground model is necessary for accurate detection. Most ap-
proaches utilize a single image to characterize the background
while trying to achieve accurate detection. However, it is usu-
ally difficult to get robust estimates of dynamic backgrounds
by using a single background model. In general, a probabilistic
background model is more suitable for the handling of dy-
namic backgrounds. However, using probabilistic background
models may increase the memory requirement. The flexible
probabilistic background model generated by the RBFMD
method stores a different number of background intensities
at each pixel position according to the dynamic range of each
pixel.

Table V shows the average number of background in-
tensities per pixel of the different probabilistic background
models generated by the RBFMD, GMM, SOBS, CB and ViBe
methods for several test sequences.

We can see that the average number of stored background
candidates per pixel by the RBFMD method for sequences
containing dynamic background (CAM, FT, WS and MR)
were 1.53 or fewer, and the number for sequences with static
background (MSA and IR) were close to 1. In comparison,
GMM, SOBS, and ViBe store fixed numbers of background
intensities at each pixel position. In previous papers, the stored
numbers of GMM, SOBS and ViBe are recommended to be
310 5, 9, and 20, respectively.

The average memory reguirements for images of different
sizes for the probabilistic background models of the different
methods are shown in Table VI. Test sequences CAM, WS,
FT, and MR with image size 160 x 128 pixels and sequences
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TABLE VI
AVERAGE MEMORY REQUIREMENTS (IN KB) OF PROBABILISTIC BACKGROUND MODELS

RBFMD (kB) | GMM (kB) | SOBS (kB) | CB (kB) | ViBe (kB)
160 x 128 pixels 76.82 18432-307.20 | 552.96 30551 | 1228.80
320 x 240 pixels 232.69 691.20-1152.00 | 2073.60 | 887.82 | 4608.00

Original
Frames

Ground
Truths

RDBG
Method

Similarity 0.3970 ) 0.1309 o

F 0.2316
MM
Method
Similarity  0.5233 04153  0.5537
F 0.6871 0.5869
SOBS
Method
Similarity 0.6152 0.4599 0.7198
Iy 0.7618 0.6300 0.8371
B
Method & q
Similarity  0.6079 0.5901 0.7236
) 0.7561 0.7422 0.8396
ViBe A
Method B ‘#_ 2 :
Similarity . 0.4801 . 0.2617
F 0.6487 0.4148 0.6069
RBEMD
Method
Similarity  0.6294 0.6152 0.7275
I 0.7725 0.7618 0.8423

Fig. 6. Detection results of sequence CAM.

MSA and IR with image size 320 x 240 pixels were employed
to evaluate average memory requirements.

For sequences with image size 160 x 128 pixels, the average
required memory of the RBFMD method is approximately
76.82kB. While for image size 320 x 240 pixels, 232.69kB
memory is required. Compared with the memory requirements

Original
Frames

Ground
Truths
RDBG
Method
Similarity  0.2192 0.2199
F 0.3596 0.3605
GMM
Method
Similarity 0.5476 . 5410 0.5451
I 0.7077 0.7021 0.7055
SOBS
Method
Similarity 0.4664 0.4724 0.4578
I 0.6361 0.6417 0.6281
B
Method
Similarity — 0.4052 0.3863 0.3745
I 0.5768 0.5574 0.5449
ViBe i

3

3

Method € y
0.3925

0.3506

Similarity 0.3272
I 0.5192 0.4931 0.5637
RBEMD
Method
Similarity  0.6184 0.5938 ;
I 0.7642 0.7451 0.7232

Fig. 7. Detection results of sequence FT.

for probabilistic background models of other methods, use of
the proposed method can result in a 58 to 95 percent reduction
in memory requirement.

D. Performance Results

To verify the computational feasibility for real-time applica
tions, we report the processing speeds of the RBFMD method
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Original
Frames

Ground
Truths

RDBG
Method
Similarity (J 7971 0.7052 0.6143
F 0.8871 0.8271
GMM
Method
Similarity  0.8007 0.8355 0.5983
I 0.8893 0.9104 0.7487
SOBS
Method
4
Similarity  0.8263 0.7735 0.3794
I, 0.9049 0.8723 0.5501
B
Method
Similarity 0.7890 0.8454 0.7895
I 0.8820 09162 0.8824
ViBe
Method
Similarity  0.8944 0.8245
F, 0.9443 0.9038 0.8924
RBEMD
Method
Similarity  0.8999 0.8924 0.8079
I 0.9473 0.9431 0.8937

Fig. 8. Detection results of sequence MR.

TABLE VII
PROCESSING SPEED (IN F/S) OF RBFMD

CAM FT WS MR MSA IR
40.35 | 5359 | 5829 | 5457 | 34.10 | 35.03

for several test sequences in Table VII. The RBFMD method
was implemented using C programming language on an Intel
Core2Quad 2.33 GHz processor and 2GB of RAM, running a
Windows 7 operating system.

The performance results indicate that for all sequences with
dynamic and static backgrounds, the RBFMD method can
achieve speeds higher than 34f/s, which is sufficient for real-
time applications.

|IEEE TRANSACTIONS ON CYBERNETICS
( Jn’gf'mﬂ’ i E
Frames

i n‘_ _— "

Grround
Truths

RDBG
Method
Similarity  0.8078 0.6452 0.7698
F 0.8937 0.7843 0.8689
MM
Method
Similarity  0.8049 0.1493 0.5162
F 0.8919 0.2598 0.6809
SOBS
Method
Similarity  0.8245 0.7243 0.7459
I 0.9038 0.8401 0.8545
B
Method L
Similarity — 0.5836 0.6237 0.7180
1 0.7371 0.5952 0.8337
ViBe
Method t
Similarity 0.7902 0.7245 0.8581
F 0.8828 0.8403 0.9236
RBEMD
Method
Similarity  0.8266 0.8430 0.9030
I 0.9260 0.9148 0.9490

Fig. 9. Detection results of sequence MSA.

V. CONCLUSION

A novel motion detection approach for moving object
segmentation in both static and dynamic scenes was proposed.
The proposed method was based on the RBF neural network
and featured a combination of a unique multibackground
generation (MBG) module along with a novel two-procedure
moving object detection (MOD) module to achieve accurate
and complete detection in both static and dynamic scenes.
The MBG module effectively generated aflexible probabilistic
model that can express the dynamic range of each pixel within
the background and can be used to construct the hidden layer
in the RBF network structure. This minimized the network
structure and increased the processing speed. After a high-
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quality probabilistic background model was generated, the
MOD module utilized a block alarm procedure to eliminate
unnecessary examination of the entire background region, after
which an object extraction procedure can efficiently detect the
pixels of moving objects. For the final step, the output weights
were adjusted for operations on the next incoming frame.
The experimental results were evaluated by qualitative and
guantitative comparisons with other state-of-the-art methods
based on a wide range of natural video sequences. The
guantitative and qualitative evaluation results indicated that the
proposed method was capable of achieving complete and accu-
rate detection in both static and dynamic scenes, outperforming
other methods. Moreover, we demonstrated empirically that
the proposed method had the lowest memory requirement for
probabilistic background model generation, compared to other
probabilistic background modeling techniques. In addition, our
method was demonstrated to be feasible for real-time applica-
tions. Analyses indicated that the proposed RBFMD method
can detect moving objects in both dynamic and static scenes
with inexpensive computation and low memory requirement.
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