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a b s t r a c t

We propose a stochastic optimization model for the Multiperiod Multiproduct Advertising Budgeting
problem, so that the expected profit of the advertising investment is maximized. The proposed model is a
convex optimization problem that can readily be solved by plain use of standard optimization software. It
has been tested in a case study derived from a real advertising campaign. In the case study, the expected
profit of the stochastic approach has been favorably compared with the expected profit of the deterministic
approach. This provides a quantitative argument in favor of the stochastic approach for managerial decision
making in a data-driven framework.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we address the Multiperiod Multiproduct Adver-
tising Budgeting (MAB) problem (notice that we drop one M for
short). More specifically, we wish to simultaneously optimize the
advertising campaigns of different products [9], considering a
multiperiod planning horizon and having the cumulative advertis-
ing effect [27] as the inter-period linking variables.

This work can be considered as the second part of [4] where:
first, the relevance of the MAB problem and its state-of-the-art were
discussed. Second, a deterministic MAB optimization model was
introduced. Third, its theoretical properties were studied (convexity,
separability and optimality conditions). The purpose of this second
part is to introduce a stochastic MAB optimization model and
compare it with its deterministic counterpart introduced in [4]. In
the remainder of the paper, we will replace the term ‘optimization
model’ by ‘model’ for short. In deterministic models, each unknown
parameter is substituted by an estimate, i.e., all the problem
parameters are considered to be known. However, in real situations
many of the problem parameters are unknown at the moment of
deciding the advertising budget. In this paper we will enhance our
previous MAB model by explicitly dealing with this uncertainty:
each unknown parameter will be incorporated into the MAB model
as a random variable instead as a single estimate. Thus, the new
stochastic MAB model proposes an optimal advertising budget
adapted not only to the estimated parameter value, but also to a

set of representative values of the uncertain parameters, taking into
account the likelihood of each parameter value.

Stochastic models of the advertising budgeting problem under
uncertainty have been proposed in the literature from different
perspectives. In [30] a stochastic game theory approach is used to
analyze the optimal advertising spending in a duopolistic market
where the share of each firm depends on its own and its competitor's
advertising decisions. In [3] a Bayesian dynamic linear model is used
for studying the wear out effects of different themes of advertising
(for example, price advertisements versus product advertisements)
in order to improve the effectiveness of advertising budget allocation
across different themes. In [15] a Markov decision process approach
is used for modeling the multistage advertising budgeting problem.
Other approaches that have been proposed to solve the advertising
budgeting problem under uncertainty are based on multicriteria
fuzzy optimization [28], chance constraint goal optimization [5] and
robust optimization [2]. Other works that consider the stochastic side
of the advertising budgeting problem in a multiperiod environment
are [3,30], among others. A recent survey about dynamic advertising
(deterministic and stochastic approaches) can be found in [23].

As we have mentioned, different stochastic aspects of the adver-
tising budgeting problem have been considered in literature. But, as
far as we know, a stochastic version of the MAB problem has not yet
been addressed. Thus, for example, [13] considers a multiproduct
model but for a single period and with a deterministic approach, [35]
considers a multiperiod model but for a single product and also with
a deterministic approach, [15] considers a stochastic multiperiod
model but for a single product. However, as we will illustrate in our
case study, a relevant expected profit improvement can be achieved if
the parameter uncertainty in MAB models is taken into account
(stochastic models) compared to ignoring it (deterministic models).
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In this paper we propose and analyze a stochastic optimization
version of the MAB problem, that improves two previous advertising
budgeting models presented in [4,13], respectively. The proposed
model has appealing properties: it is a convex optimization model
and it is a stochastic optimization model (it takes into account the
likelihood of the representative values of the uncertain parameters).
There are other choices to deal with the uncertainty in the MAB
problem. Thus for example, the chance constraint approach allows
for incorporating probabilistic constraints which are interesting from
a modeling point of view, but, in general, the resulting deterministic
equivalent opti-
mization problem is non-convex. Another possible approach is robust
optimization which deals with uncertainty by considering uncer-
tainty sets for the model parameters, but this approach, in contrast
with the approach we use, does not take into account the likelihood
of each parameter value given by its probability distribution. See [24].

As it has been stated above, the aim of the stochastic MAB model
presented here consists of obtaining the optimal advertising budget
and its related allocation, by considering that the probability distribu-
tion of the uncertain parameters is known (or at least we can appro-
ximate it). Our model aims to addressing the following questions:
(a) What is the optimal multiproduct advertising budget for the whole
planning horizon? (b) Given an advertising budget, how can we
optimally allocate it along the planning horizon? (c) Is it advisable to
consider stochastic MAB models? Or on the contrary, is it enough to
consider deterministic ones?

The MAB model introduced in [4] is simple but realistic enough
to be used in the advertising industry. From a mathematical point
of view, it corresponds to a convex optimization problem which is
numerically tractable and allows for computing the global optimal
solutions with moderate computational effort. We will analyze
under which conditions these desirable properties are inherited by
the new stochastic MAB model.

The remainder of the paper is organized as follows. Section 2
introduces by example the single-stage stochastic optimization pro-
blem with deterministic feasible set. In Section 3 a stochastic version
of the MAB problem is introduced and analyzed. A case study is
introduced in Section 4 to illustrate the effectiveness of the stochastic
model as well as the theoretical concepts of Section 3. Section 5
concludes and outlines future research. Finally, in Appendix A we list
and prove the theoretical results of the paper and in Appendix B we
give some basic features of regression models and Bayesian inference.

2. Single-stage stochastic optimization with deterministic
feasible set

Stochastic optimization literature considers an optimization hor-
izon with one, two or more decision stages (single-stage, two-stage
and multistage models, respectively). Single-stage models [24,31]
consider only one decision stage, i.e., the decision is to be made ‘here
and now’ and the model does not account for any corrective (recourse)
actions as in the two-stage and multistage cases [6,34]. As we
mentioned in Section 1, a stochastic version of the MAB problem
has not yet been addressed. As a first step in this direction, in this
paper we propose a single-stage stochastic MABmodel. We show that,
in the context of advertising budgeting, for a slightly higher conceptual
and computational effort, the single-stage stochastic model may
significantly improve the deterministic one in two aspects: expected
profit and accuracy (see Section 4). However, one could also be
interested in going further to study two-stage or multistage models
with recourse, since it would be natural to re-solve the MAB problem
over the rolling horizon and update the decisions. As a sequel of this
paper, given the important nature of the issue, we are planning to
study the advantage of using a two-stage or multistage stochastic
approach, as pointed out in Section 5.

In this section we introduce the single-stage stochastic optimi-
zation problem with deterministic feasible set, i.e., with determi-
nistic parameters in the constraints. Let us consider the decision
vector xAD�Rn; where D is called the feasible set, and the
random vector ξ whose probability distribution is supported on
a set Ξ �Rm. Given the cost function Fðx; ξÞ we define the
stochastic problem PS as

min
xAD

FSðxÞ;

where FSðxÞ≔E½Fðx; ξÞ�. Notice that the uncertain parameters are
only in the cost function and not in D. In some situations problem
PS is approximated by a deterministic model named the expected
value problem PEV that can be expressed as

min
xAD

FEV ðxÞ;

where FEV ðxÞ : ¼ Fðx; E½ξ�Þ. In this context let xnð�Þ and Fn

ð�Þ denote the
optimal solution and cost of problem Pð�Þ, respectively. The deter-
ministic and stochastic MAB models, to be presented in Section 3,
have the structure of problems PEV and PS, respectively, and for this
reason we review some basic but useful properties to formulate and
solve those two problems (see Appendix A, Proposition 1).

In the context of two-stage stochastic linear optimization let EV,
EEV and RP denote the optimal cost of the expected value problem,
the expected result of using the EV solution and the optimal cost of
the Recourse Problem, respectively; see for example [6,24]. Given
that the problem of concern in this section does not consider a
recourse (corrective action), let us use the term SP (optimal cost of
the Stochastic Problem) instead of RP. These concepts can be
adapted in our case as follows:

EV¼ Fn

EV ; EEV¼ FSðxnEV Þ; SP¼ Fn

S :

With this notation, Proposition 1 (see Appendix A) recovers the
well-known result in stochastic linear minimization EVrSPrEEV.
Another useful concept is VSS (Value of the Stochastic Solution),
such that VSS¼EEV � SP. It measures the cost of ignoring
uncertainty in choosing a decision; see again for example [6,24].
Let us illustrate these concepts by means of an example.

Example 1. The objective of this example is to show that the
expected value function FEV may be a bad approximation to the
stochastic function FS for optimization purposes. Consider the cost
function

Fðx; ξÞ ¼ k1þk2 eξ1x�ξ2 x;

where k1AR and k240 are constants, and ξ1 and ξ2 are normal
random variables Nðξ1;σ2

1Þ and Nðξ2;σ2
2Þ; respectively. It is easy to

prove that Fðx; ξÞ is convex in ξ; then by Proposition 1 (see
Appendix A) we get

k1þk2 eξ1x�ξ2xrE k1þk2 eξ1x�ξ2x
h i

xAR:

Consider problems PS and PEV associated with Fðx; ξÞ and D¼R.
In this case we have

FSðxÞ ¼ E k1þk2 eξ1x�ξ2x
h i

¼ k1þk2E eξ1x
h i

�ξ2x

¼ k1þk2 eξ1xþ0:5σ2
1x

2 �ξ2x;

where we have used that E eξ1x
� �

corresponds to the moment-
generating function of the normal random variable ξ1 and there-
fore it is equal to eξ1xþ0:5σ2

1x
2
(see [11] for details).

However, in the expected value problem, the function FS(x) is
approximated by

FEV ðxÞ ¼ k1þk2 eξ1x�ξ2x:
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Thus, the approximation

E eξ1x
h i

¼ eξ1xþ0:5σ2
1x

2 � eξ1x

may produce poor optimization results as it is depicted in Fig. 1
for the instance with the following parameters: k1 ¼ 5000;
k2 ¼ 0:01; ξ1 ¼ 2;σ2

1 ¼ 0:1; ξ2 ¼ 1000;σ2
2 ¼ 100. After solving PEV

and PS it results

ðxnEV ; Fn

EV Þ ¼ ð5:4; 90Þ;
ðxnS ; Fn

S Þ ¼ ð4:7; 663Þ;
FSðxnEV Þ ¼ 1750:

Since EV¼90, SP¼663 and EEV¼1750, the chain of inequalities
EVrSPrEEV holds. Furthermore, although the deterministic and
the stochastic optimal solutions are similar (5.4 versus 4.7), the
corresponding expected costs are very different (1750 versus 663),
giving a VSS equal to 1087. Of course, this is only a toy example,
but it illustrates the well-known fact that the expected value
function FEV may be a bad approximation to the stochastic function
FS for optimization purposes.

3. Formulation of the MAB problem

The objective of the Multiperiod Multiproduct Advertising
Budgeting (MAB) problem is to maximize the profit of the sales
due to advertising. Notice that we distinguish between baseline
sales (sales that one would expect without advertising) and sales
due to advertising. Let us briefly review some key concepts in the
advertising industry (see, for example, [20] for more details).

� Advertising media: the technology through which the advertis-
ing takes place. Although it is still dominated by traditional
technologies, namely television, radio, print publications, etc.,
internet based advertising is rapidly gaining market share
[1,10,12].

� Insertion: a single placement of an ad in an advertising media.
� Reach: the proportion of the target audience exposed to at least

one insertion of the advertisement [9]. This proportion is called
the reached audience.

� Frequency: the average number of times a person from the
reached audience is exposed to an advertisement.

� Exposure: exposure to an advertisement involves reach and
frequency and can be measured in Gross Rating Points: GRPs�
reach	 frequency. For example, a purchase of 100 GRPs could
mean that 100% of the target audience is exposed once to an
advertisement or that 50% of the target audience is exposed twice
[20]. Normally, advertising is measured in GRPs and not in euros
[3]. Managers evaluate the effectiveness of their campaigns in
terms of demand generated per GRP and most media buying is

done in terms of GRPs. The reason is that GRPs provide a more
accurate picture of advertising input than advertising expendi-
tures since it is not clear how much advertising exposure can be
purchased for a given budget.

� Marketing mix: marketing mix variables (‘marketing mix’ for short)
correspond to price, sales promotions, advertising copy, advertis-
ing channel, timing, and other brand-specific marketing factors.

� Market segmentation: the distinct consumer groups, each one
characterized by the same needs and behaviors [8].

Market response models provide a basis for fine tuning the
marketing mix, which in order to be effective has to take into account
the market segmentation. The largest category of market response
models are those dealing with sales and market share as dependent
variables. Companies want to know what influences their sales (the
sales drivers or, for short, drivers). Their objective is to set the
marketing mix in order to optimize their sales. One of the limitations
of the MAB model that we present is that it does not take the product
price as a sales driver, i.e., as a decision variable (since prices are input
data). All the other above mentioned drivers (sales promotions,
advertising copy, advertising channel and timing) can be taken into
account in our MAB model.

We introduced in [4] a deterministic model for the MAB
problem. A more realistic approach to this problem consists of
allowing randomness of the main parameters of the model, namely
advertising saturation levels, advertising diminishing returns, cross
product effects and white noise of the profit function. With this
objective in mind, in this section the stochastic optimization version
of the MAB problem is introduced, directly derived from the
deterministic model in [4].

3.1. Notation

Indexes:
t index for periods, tAT ¼ f1;…; Tg
j index for products, jAJ ¼ f1;…; Jg
i (auxiliary) index for products,

iAI ¼J
k index for advertising channel,

kAK¼ f1;…;Kg
r index for components of ξ,

rAR¼ f1;…;Rg
s index for scenarios, sAS ¼ f1;…; Sg
TJK stands for T 	 J 	K (analogously

for other combinations of index sets:
JK; TJ , etc.)

Deterministic parameters:

Fig. 1. In Example 1, FEV(x) is a bad approximation to FS(x) for optimization purposes.
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ctjk cost of advertising channel jk in
period tAf1;…; Tþ1g; ctjk4 0 (note
that, for simplicity, to refer to the
investment in the k-th advertising
channel for product j, we use the
expression ‘advertising channel jk')

jkAJK

δjk retention rate of the advertising
effect from period to period for
channel jk; δjkA �0;1½

jkAJK

ptj profit per unit of product j in period
t; ptj4 0

tjATJ

~y0jk initial accumulated advertising effect
of channel jk (‘adstock’), ~y0jkZ0

jkAJK

Stochastic parameters:
αtjk advertising saturation level in period

t of channel jk; alphatjk40
tjkATJK

βtjk advertising diminishing return to
scale in period t of channel jk;βtjk40

tjkATJK

γtijk sales of product i in period t induced
by one unit invested in advertising
channel jk (‘cross product effect’)

tijkATIJK

ε stochastic error of the profit function
such that E½ε� ¼ 0

ξ random vector that accounts for all
the stochastic parameters of problem
MAB (αtjk;βtjk; γtijk and ε)

ξr component of ξ such that
ξ¼ ðξ1;…; ξRÞ>

rAR

ξs scenario or realization of ξ such that
its probability is ws (weight)

sAS

bξ random vector defined by
fðξs;wsÞgsAS

ξ expectation of bξ
Functions:

Stjk sales of product j in period t due to
advertising channel jk

tjkATJK

Ctijk cross product effect: sales of product
ia j in period t due to advertising
channel jk

tijkATIJK

P Profit function

Sets:
D feasible set for problems MABS and

MABEV

Decision variables:
gtjk investment (GRPs) in advertising

channel jk in period t (GRP stands for
‘Gross Rating Points’)

tjkATJK

ytjk accumulated advertising effect of
channel jk in period t (‘adstock’)

tAf0;…; Tg; jkAJK

z1jk value of the initial adstock level for
advertising channel jk

jkAJK

zTjk value of the final adstock level for
advertising channel jk

jkAJK

x vector that accounts for all the
decision variables of problem MAB
(gtjk; ytjk and ztjk)

3.2. Adstock function

Advertising on different media (television, newspapers, inter-
net, etc.) tries to increase consumption in two ways. On the one

hand, it tries to influence the consumer immediate brand choice
and, on the other hand, it tries to increase brand awareness, in
order to make easier the brand choice for future advertising.
Therefore, the advertising effect on consumer purchase behavior
spreads over time and the advertising investment in one period is
accumulated with past advertising effects. In this respect, it is
common to use the function so-called adstock, which is a math-
ematical model that combines the past and current advertising
effects. According to [32], the adstock function models the impact
that advertising has over consumer awareness and in turn on sales
volume. It means stocking the advertising effect by integrating
prior advertising expenditures into a stock function, say ytðgÞ, and
considering the ‘carry-over effect’ over time. As reported in [20], a
typical choice is the (linear) basic adstock model of Broadbent [7]:

y0ðgÞ ¼ ~y0 ð1Þ

ytðgÞ ¼ δyt�1ðgÞþgt ; tAT ; ð2Þ
where we have that ~y0 is the initial value of the adstock, yt is the
adstock at time t, δ is the retention rate of the advertising effect
and gt is the investment in advertising at time t. Observe that to
define yt we could write ytðg1;…; gtÞ instead, to indicate that the
current advertising effect depends on past and current advertising
investments. To simplify the notation, we just write ytðgÞ. Notice
that (2) is the discrete time version of the Nerlove–Arrow contin-
uous time model for adstock [27]. Later we will append a pair of
indexes jk, to indicate the advertising channel in Eqs. (1) and (2),
such that we will have y0jkðgÞ; ~y0jk; etc. for all jkAJK.

In order to model the adstock, other functions can be used such
as, for example, the logistic (S-curve) model. The advantage of the
logistic model and other nonlinear adstock models, over the basic
adstock model, is that they can capture diminishing returns and
saturation levels [32]. The advantage of the basic adstock model
corresponds to its effectiveness: it is simple and captures the
accumulative and decay effects of advertising over time. Never-
theless, in our MAB model we capture diminishing returns and
saturation levels using the sales response function Stjk combined
with the basic adstock model (see Eq. (6) and comments therein).

3.3. Profit function

In this section a stochastic MAB profit function is introduced
directly derived from the deterministic one in [4], where further
modeling details can be found (Section 2.2: ‘The multiproduct
sales response function’). We define the stochastic MAB profit
function Pðg; ξÞ as follows:

Pðg;ξÞ ¼
X

tjkATJK
Ptjkðg;α;β; γÞþε; ð3Þ

where

g¼ ðgtjkÞtjkATJK; ð4Þ

ξ¼ ðαtjkÞtjkATJK; ðβtjkÞtjkATJK; ðγtijkÞtijkATIJK; ε
� �

; ð5Þ

Ptjkðg;α;β; γÞ ¼ ptj Stjkðg;α;βÞþ
X
iAI

ptiCtijkðg; γÞ�ctjkgtjkþztjkðgÞ;

tjkATJK; Stjkðg;α;βÞ ¼ αtjkð1�e�βtjkytjkðgÞÞ; tjkATJK; ð6Þ

Ctijkðg; γÞ ¼ γtijkytjkðgÞ; tijkATIJK; ð7Þ

ytjkðgÞ ¼ δjkyt�1;jkðgÞþgtjk; tjkATJK; ð8Þ

y0jk ¼ ~y0jk jkAJK; ð9Þ

z1jkðgÞ ¼ �c1jk δjk ~y0jk; jkAJK; ð10Þ
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ztjkðgÞ ¼ 0; 1otoT ; jkAJK; ð11Þ

zTjkðgÞ ¼ cTþ1;jkδjkyTjkðgÞ; jkAJK: ð12Þ
The following comments are in order:

� In Eq. (3) the error ε of the profit function is required both by
(possibly) omitted variables in the model and by truly random
disturbances, as pointed out in [20].

� In Eq. (5), coefficients γtijk with i¼ j are assumed both to exist
and to be 0 for notational simplicity.

� Eq. (6) models the sales of product j induced by advertising
channel jk in period t. In general the single product sales
response function Stjk corresponds to increasing concave func-
tions which model diminishing returns and advertising satura-
tion levels. A typical choice, among others, is the model in
Eq. (6), which is called the ‘modified exponential’ function (see
[4,20] for details). Observe that in Stjkðg;α;βÞ we could write
αtjk and βtjk instead, but we drop the subindexes to simplify the
notation. Analogously in Eq. (7).

� Eq. (7) models the cross product effects: sales on product ia j
due to advertising in channel jk in period t. Notice that cross
product effects are modeled as linear functions although they
may be slightly nonlinear (decreasing and convex) such that
the resulting profit function is not concave. As is well known,
concavity of the objective function is a desirable property in a
maximization problem since it guarantees global optimality
(assuming a convex feasible domain). On the other hand, the
cross product effects are often small relative to the direct
advertising effects, as in the case study presented in Section
4. Thus, in our view, to approximate the cross advertising
effects by linear functions assuming that the cross effects are
small, represents a balance between model accuracy and model
tractability (see [4] for details).

� Eq. (8) corresponds to the adstock function.
� Eq. (9) sets the initial adstock level for advertising channel jk.
� Eq. (10) accounts for the value of the initial adstock level for

advertising channel jk.
� In Eq. (11), for notational convenience, we use these dummy

terms and set them equal to 0.
� Eq. (12) accounts for the value of the final adstock level for

advertising channel jk.

From a statistical point of view the profit function in (3) corre-
sponds to a nonlinear regression model where the profit, say ~P , is the
dependent variable and the advertising investment vector g is the set
of independent variables. These variables are related by means of the
regression function such that ~P ¼ Pðg; ξÞ. From Eqs. (3)–(12) it is clear
that it is a nonlinear regression model. As usual, the regression
parameters are unknown and one way to model them is by means of
a probabilistic model in the Bayesian inference approach (see
Appendix B). In our case, we consider the random vector ξ which
accounts for all the regression parameters. As a consequence, profit ~P
is a random variable since its value depends on the realization of ξ.
Most commonly, regression analysis estimates the conditional expec-
tation of the dependent variable given the independent variables, i.e.,
E½ ~P ∣g�. This conditional expectation is computed by using the regres-
sion model as follows E½ ~P ∣g� ¼ E½Pðg; ξÞ�. Thus, in order to compute
the advertising investment that gives the best expected profit we will
solve the following optimization problem:

max
gAG

E½ ~P ∣g� ¼max
gAG

E½Pðg; ξÞ�; ð13Þ

where G is the set of feasible advertising investments. Notice that this
problem falls into the class of single-stage stochastic optimization
problems with deterministic feasible set (assuming that there is no
uncertainty in the definition of G). In contrast, in [4] we approximated

this problem by solving the (deterministic) expected value counter-
part

max
gAG

Pðg; E½ξ�Þ:

The previous two problems have the same structure as problems PS

and PEV , respectively, introduced in Section 2, where it was shown
that problem PEV may be a very poor approximation to problem PS.

3.4. Stochastic optimization based on scenarios

If a stochastic optimization problem, as for (13), becomes too
difficult it is common to approximate it in terms of scenarios [6], a
methodology closely related to the Sample Average Approximation
method [25,34]. Roughly speaking, in the scenario based approach
the uncertainty of the problem is approximated by a set of
scenarios. More precisely, let ξ denote the random vector of the
stochastic parameters of the MAB model. Let ξs denote the scenario
or realization of the random vector ξ for all sAS, where S is the
index set of the scenarios that are considered (the cardinality of S is
assumed to be finite). Let ws denote the probability (weight) of
scenario sAS. In this way the set fðξs;wsÞgsAS defines a random
vector bξ with finite support. That is, in the scenario based approach,
the random vector ξ is approximated by the random vector bξ. We
denote by ξ the expectation of bξ (i.e., ξ ¼ E½bξ�Þ. Obviously, ξ only is
an approximation to E½ξ�. It will be useful to compute the expecta-
tion of each component bξr of

bξ, for all rAR, which can be done by
means of the following formula:

E½bξr � ¼
X
sAS

wsξsr rAR: ð14Þ

Furthermore, any βtjk corresponds to a ξr for a unique rAR, such
that notation and meaning of ξsr ;

bξr ; ξr will be translated as
βs
tjk;

bβ tjk;β tjk. Analogously for αtjk and γtijk.

3.5. Objective function

In this section a stochastic MAB objective function, based on
scenarios, is introduced directly derived from the profit function
(3). We define the stochastic MAB objective function as follows:

Fðx; ξsÞ ¼ �
X

tjkATJK

(
ptj Stjkðy;αs;βsÞþ

X
iAI

pti Ctijkðy; γsÞ:

�ctjk gtjkþztjk

)
�εs sAS;

where

x¼ ðgtjkÞtjkATJK; ðytjkÞtjkATJK; ðztjkÞtjkATJK

� �
;

ξs ¼ ðαs
tjkÞtjkATJK; ðβs

tjkÞtjkATJK;
�

ðγstijkÞtijkATIJK; ε
s
�
; sAS;

Stjkðy;αs;βsÞ ¼ αs
tjkð1�e�βs

tjk ytjk Þ; sAS; tjkATJK;

Ctijkðy; γsÞ ¼ γstijk ytjk; sAS; tijkATIJK;

z1jk ¼ �c1jk δjk ~y0jk; jkAJK;

ztjk ¼ 0; 1otoT ; jkAJK;

zTjk ¼ cTþ1;jk δjk yTjk; jkAJK:

Notice that this objective function has been written as the
opposite of the profit function (3) in order to be used to define a
minimization problem. Furthermore, it is defined in the x-space
which accounts for vector ðg; y; zÞ. In contrast, profit function (3)
was defined in the g-space. Both functions could be equivalently
used to define the MAB optimization problem. However, the
version in the g-space is more appropriate for regression analysis,
where g corresponds to the independent variables and the profit is
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the dependent variable (see Section 3.3). On the other hand, the
version in the x-space seems more appropriate to define the
optimization problem: the objective function is less involved since
adstock functions ytjk(g) in (6) and (7) can be included as variables
ytjk, linked with vector g by means of linear constraints (17). In this
way it easier to analyze the structure of the resulting optimization
problem (15)–(22), in particular the objective function (23).

3.6. Stochastic optimization model

Let the Stochastic Multiperiod Multiproduct Advertising Bud-
geting problem MABS be defined as a single-stage stochastic
optimization problem with deterministic feasible set. Notice that
in a different way as traditionally it is done in stochastic optimiza-
tion for multiperiod problems [6,24], all (multiperiod) decisions
are taken at the beginning of the planning horizon as it is a
practice in the advertising sector. That is, it is a stochastic
optimization problem without recourse.

Taking into account the cost function Fðx; ξsÞ, defined in the
previous section, and the dynamics of the adstock function (1) and
2, problem MABS can be modeled as a single-stage stochastic
optimization with deterministic feasible set (nonlinear objective
function and linear constraints):

min
x

FSðxÞ ¼ E½Fðx; bξÞ� ¼X
sAS

wsFðx; ξsÞ; ð15Þ

s:t: y0jk ¼ ~y0jk; jkAJK; ð16Þ

ytjk�δjk yt�1;jk�gtjk ¼ 0; tjkATJK; ð17Þ

z1jk ¼ �c1jk δjk ~y0jk; jkAJK; ð18Þ

ztjk ¼ 0; 1otoT ; jkAJK; ð19Þ

zTjk�cTþ1;jk δjk yTjk ¼ 0; jkAJK; ð20Þ

Axrb; ð21Þ

xrxrx; ð22Þ
where x¼ ðg; y; zÞ and Eq. (21) accounts for possible linear con-
straints for x, which has lower and upper bounds (Eq. (22)). In
Proposition 2 of Appendix A we show that under mild assump-
tions this objective function can be stated as follows:

FSðxÞ ¼ �
X

tjkATJK

(
ptjαtjk 1�E½e�bβ tjk ytjk �

� �
þ
X
iAI

ptiγ tijkytjk:

�ctjk gtjkþztjk

)
; ð23Þ

where E½e�bβ tjk ytjk � ¼P
sASw

se�βs
tjk ytjk .

If we define the feasible set D by Eqs. (16)–(22) then problem
MABS can be written as

min
xAD

FSðxÞ;

i.e., problem MABS has the same structure as problem PS considered
in Section 2. Also observe that, although problem MABS considers T
periods (i.e., it is a multiperiod problem) the value of the decision
variables does not depend on each scenario ξs. Therefore, it is a
single-stage stochastic optimization problem with deterministic fea-
sible set. In spite of the problem being a single-stage one, it takes into
account all the scenarios ξs, in contrast with the deterministic
approach, that simply takes into account the expected value of the
parameters. Finally, Problem MABS is a convex optimization problem,
which is a convenient feature for optimization and computational
aspects (see Appendix A, Proposition 3).

3.7. Deterministic optimization model

The stochastic parameters of problem MABS are replaced with
their expected value to obtain the so-called expected value
problem, that by definition is a deterministic one. So, the expected
value Multiperiod Multiproduct Advertising Budgeting problem
MABEV can be expressed as

min
xAD

FEV ðxÞ ¼ Fðx;ξÞ;

where ξ ¼ E½bξ� ¼P
sASw

sξs.
This objective function can be stated as follows:

FEV ðxÞ ¼ �
X

tjkATJK

(
ptj α tjk 1�e�β tjk ytjk

� �
þ
X
iAI

ptiγ tijkytjk:

�ctjk gtjkþztjk

)
: ð24Þ

Notice that the term E½e�bβ tjk ytjk � of FS (Eq. (23)) is approximated
in FEV by the term e�β tjk ytjk (Eq. (24)).

Model MABEV corresponds to the one introduced in [4] and has
the same structure as problem PEV analyzed in Section 2. Notice
that, in this deterministic version the random vector bξ of the
stochastic version is replaced by its expectation ξ ¼ E½bξ�, so we
minimize Fðx; ξÞ. In contrast, in the stochastic MAB model we
minimize E½Fðx; bξÞ� which is, in general, different from Fðx; ξÞ.
Furthermore, problem MABEV is also a convex optimization problem
(see Appendix A, Proposition 4). Finally it is important to mention
that under mild assumptions we have that Fn

EV rFn

SrFSðxnEV Þ (see
Appendix A, Proposition 5).

4. Case study

4.1. Case description

An experimental case is analyzed to show the improvement that
the stochastic model can bring to the deterministic one of the
Multiperiod Multiproduct Advertising Budgeting (MAB) problem
under parameter uncertainty. Notice that the level of improvement
depends on the instance considered. In any case, regarding the
expected profit, the stochastic approach will always be at least as
good as the deterministic one (see Appendix A, Proposition 5). The
objective of the current case study is to show by example that in the
MAB problem, for a slightly higher conceptual and computational
effort, the stochastic approach may significantly improve the deter-
ministic approach in two aspects: expected profit and accuracy. As it
was pointed out in the introduction, considering the inherent
uncertainty of some MAB parameters, the aim of this work is to
answer the following questions: (a) What is the optimal multiproduct
advertising budget for the whole planning horizon? (b) Given an
advertising budget, how can we optimally allocate it along the
planning horizon? (c) Is it important to consider stochastic models?
Or on the contrary, is it enough to consider deterministic ones?

The computations have been conducted on a laptop under
Windows XP, with a processor Intel Core Duo 2.40 GHz and with
3.48 GB of RAM. The implementation has been written in Matlab
(R2008b) and the constrained convex minimization problems
MABS and MABEV, have been solved by function fmincon from
the Matlab Optimization Toolbox (V4.1) with default parameters.

Instances MABS and MABEV that are considered in this computa-
tional experiment were derived from a real case addressed at the
consulting company Bayes Forecast1 to plan the advertising cam-
paign for a leading fast moving consumer goods company. The

1 Bayes Forecast S.L., Madrid (Spain), www.bayesforecast.com.
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instance we present here, considers a 12 months planning horizon
(T¼12), two products that for confidentiality we denote by P1 and
P2 (I¼2) and two advertising channels (K¼2). The first channel
corresponds to TV advertising and the second channel corresponds
to in-store promotions. The original real case considered a higher
number of products and advertising channels, however we con-
sidered a reduced number of them for a clearer exposition.
Furthermore, the data from the real case was modified for con-
fidentiality and research reasons. Thus, for example, the costs in
Table 4 were modified from the original data in order to define
artificial alternating low and high price periods. The objective was to
observe the adaptation of the two optimization approaches to
dynamic GRP prices. Table 1 shows that the problem dimensions
as well as the unit profit per product, being the same for all periods
in the planning horizon. Table 2 gives the advertising retention rate
δjk (no units), the initial adstock ~y0jk (GRPs) and the advertising
diminishing return β tjk (GRPs�1) related to function (25), being the
same for all periods in the planning horizon. Notice that only the
expected value β tjk is given, since the corresponding empirical
distributions consider 300 realizations for each βtjk and therefore
are too large to be included in the paper. Nevertheless, they can be
obtained under request or downloaded from Section ‘Publications’
at http://bayes.etsii.urjc.es/
cbeltran/CV/. Table 3 shows the adver-
tising saturation level α tjk (units of product j) related to function
(25). Table 4 gives the cost (euros/GRP) of advertising channels in
the periods along the planning horizon. Finally, Table 5 shows the
cross product effect level γ tijk (units of product i/GRP) related to
functions (23) and (24).

In the MAB model, sales due to advertising is modeled as a
function of the accumulated advertising effect (adstock) y as
follows:

Sðy;α;βÞ ¼ α 1�e�β y
� �

: ð25Þ

This single product sales response function is known as the
‘modified exponential’ function [20].

Note: function Stjk was introduced in Section 3, and here the
indexes tjk are dropped for simplicity of exposition. The positive
parameter α corresponds to the advertising saturation level. This
means that no matter how much marketing effort is expended, the
sales due to advertising will not be higher than α. The positive
parameter β regulates the advertising diminishing return to scale.
On the other hand, γ, the cross product sales effect between
products P1 and P2, is due to substitution in this case study, i.e.,
advertising on, say P1, will increase P1 sales but will reduce P2
sales and vice versa. This effect is known as cannibalization [17].
Under cannibalization, the cross product effect parameter γ is
negative (see Table 5).

4.2. Stochastic modeling issues

As stated in Section 3.3, the sales functions Stjk and Ctijk are
based on the random vector ξ, which accounts for the stochastic
parameters αtjk;βtjk; γtijk and ε, and has probability density func-
tion ρ1. In order to set up problems MABEV and MABS, the first step
is to generate a set of scenarios fξsgsAS (sample of the random
vector ξ). In this case study we took S¼5000. By using Bayesian
inference one can obtain a sample of the so-called posterior
probability distribution of ξ, which corresponds to a discrete
estimation of ρ1. Although a technical description of the Bayesian
approach is out of the scope of this work, in Appendix B we
have reported some of its basic features in the context of
regression models. In particular, we have stressed the (dis)advan-
tages of the Bayesian inference compared to the classical
(frequentist) one.

For the deterministic problem MABEV we estimate the expected
value of αtjk;βtjk and γtijk by α tjk;β tjk and γ tijk, respectively. In this
case study, these estimations are computed from the 5000

Table 1
Problem dimensions and profit per unit of product.

Parameter Value Units

T 12 Month
I 2 Product
K 2 Advertising channel
pt1 1.75 Euro/unit of product P1
pt2 1.40 Euro/unit of product P2

Table 2
Advertising retention rate δjk, initial adstock ~y0jk and advertising diminishing return

β tjk .

j δj1 δj2 ~y0j1 ~y0j2 β tj1 β tj2

1 0.660 0.552 300 300 0.010 0.010
2 0.588 0.552 50 50 0.005 0.005

Table 3
Advertising saturation levels.

t α t11 α t12 α t21 α t22

1 345,000 270,000 86,400 105,600
2 389,850 305,100 83,700 102,300
3 493,350 386,100 113,400 138,600
4 510,600 399,600 137,700 168,300
5 731,400 572,400 199,800 244,200
6 838,350 656,100 251,100 306,900
7 897,000 702,000 278,100 339,900
8 969,450 758,700 259,200 316,800
9 734,850 575,100 224,100 273,900

10 386,400 302,400 191,700 234,300
11 427,800 334,800 189,000 231,000
12 407,100 318,600 218,700 267,300

Table 4
Cost of the advertising channels.

t ct11 ct12 ct21 ct22

1 480 528 432 475
2 480 528 432 475
3 640 704 576 634
4 640 704 576 634
5 480 528 432 475
6 480 528 432 475
7 640 704 576 634
8 640 704 576 634
9 480 528 432 475

10 480 528 432 475
11 640 704 576 634
12 640 704 576 634

Table 5
Cross product effect levels.

i γ ti11 γ ti21 γ ti12 γ ti22

1 0 �0.00010 0 �0.00015
2 �0.00020 0 �0.00015 0
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scenarios such that αtjk ¼
P

sASw
sαs

tjk (the other estimations are
computed analogously). On the other hand, the stochastic problem
MABS, is based on the expected values of αtjk; γtijk and e�βtjkytjk . The
first two are estimated as before. The third one is estimated as
follows:

E e�βtjk ytjk
h i

�
X
sAS

wse�βs
tjk ytjk :

If the number of scenarios and the number of parameters βtjk are
large, then the CPU time to solve problem MABS can be consider-
able. One way to reduce this time is by means of the alternative
approximation:

E e�βtjk ytjk
h i

� E e� ~β tjk ytjk
h i

¼
X
lAL

πl
tjk e� ~β

l
tjk ytjk ;

where ~β tjk is a finite support random variable that approximates the
continuous random variable βtjk. The support of ~β tjk is f ~β l

tjkglAL and
the corresponding probability values are f ~π l

tjkglAL. Roughly speak-
ing, the way to construct the probability mass function of ~β tjk
corresponds to represent the histogram of the observations fβs

tjkgsAS
(for details see Algorithm 1 in Appendix A). As pointed out in
Algorithm 1, the set of probability values fπl

tjkglAL
approximates the

marginal density function of βtjk for all tjkATJK. As an example,
Fig. 2 depicts the probability mass function of ~β11. Note: since in this
case study βtjk does not depend on the specific time period t, index t
can be dropped to just write ~β jk. The elements that define ~β jk are:
the index set L¼ f1;…; Lg; its support f ~β l

jkglAL and the correspond-
ing probability values πl

jk ¼ Pð ~β jk ¼ ~β
l
jkÞ for all lAL. In this case study

we have considered L¼300 realizations for each ~β jk.
Notice that the two problems, MABEV and MABS, are built from

almost the same data (Tables 1–5). The difference is that problem
MABEV is based on the expected values β tjk in Table 2, whereas
problem MABS considers the inherent uncertainty by means of the
random variables ~β tjk.

4.3. Determining the optimal budget and its allocation

We interpret ‘budget’ as the total sum of money set aside or
needed for a purpose, such that once a budget is decided it should
not be exceed. A company with several departments can be
interested in determining the optimal budget for each department.
At a first stage, the company can compute the optimal spending of
a given department by solving an optimization problem with no
budget constraint. At a second stage, this optimal spending can be
imposed as the department budget.

Thus, in order to determine the optimal budget and its allocation
in our case study, next we solve the MABEV and MABS instances

defined by the data listed in Section 4.1, with the bound constraint
gZ0. Table 6 shows the main results of these two instances, under
labels EV and SP, respectively, defined in Section 2. In particular it
shows the optimal budget (optimal spending) and the optimal
profit as well as the related CPU time. As an example, the optimal
budget allocation corresponding to advertising channel 1 of product
P1, is depicted in Fig. 3, where it can be observed that the stochastic
approach is more sensitive to price changes than the deterministic
approach. The former allocates more GRPs in low price periods
(months 1–2, 5–6 and 9–10) and less GRPs in high price periods
(months 3–4, 7–8 and 11–12).

In this context, the expected profit of using the expected value
solution xnEV , for short EEV, is computed as �FSðxnEV Þ where FS is the
stochastic objective function (23). Remember that the objective
function F was defined as the opposite of the profit function P in
order to define a minimization problem. Table 6 shows that the
advertising budget proposed by the stochastic model is 13.93%
(531,705 euros) higher than the advertising budget proposed by the
deterministic model. It also shows that the stochastic approach
produces an expected profit 4.38% (738,146 euros) higher than the
expected profit of the deterministic approach given by the EEV. Of
course, the stochastic improvement in expected profit observed in
this case study does not guarantee this level of improvement for all
the MAB instances. Notice that in this case study the deterministic
approach is erroneous, thus misleading for managerial purposes,
since the expected profit estimation has an error of almost 38% (the
expected profit estimation is EV¼23,276,709 euros and the corre-
sponding true expected profit is EEV¼16,870,731 euros).

It is worthy to mention that the inequality chain EEVrSPrEV
(maximization version) is fulfilled

16;870;731r17;608;877r23;276;709;

in accordance with Proposition 5 (see Appendix A). Notice that in
the proposition we have the opposite orientation of the inequal-
ities since there we are in a minimizing cost context and here we
are in a maximizing profit context. In this instance, the value of the
stochastic solution (VSS) is equal to 531,705 euros.

Fig. 2. Probability mass function of ~β11.

Table 6
Optimal budget and optimal profit.

EV EEV SP Variation (%)

Budget (euros) 3,818,334 – 4,350,039 þ13.93
Deterministic profit (�FEV ) 23,276,709 – – –

Expected profit (�FS) – 16,870,731 17,608,877 þ4.38
CPU time (s) 2 – 54 –
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So far we have compared the stochastic versus the determinis-
tic approaches by comparing the corresponding expected profits
E½PðxnS ; bξÞ� and E½PðxnEV ; bξÞ�; as numerical values. It can also be useful
to compare the corresponding profits PðxnS ; bξÞ and PðxnEV ; bξÞ, as
random variables, whose empirical probability distribution can
be seen in Figs. 4 and 5, respectively. These distributions have been
obtained by computing the profits associated to a sample of size
20,000 of the random vector ξ. That is, for each sample vector ξk,
we have computed the corresponding sample profits PðxnS ; ξ

kÞ
and PðxnEV ; ξ

kÞ whose histogram can be seen in those figures,
respectively. The sample expected profits for the deterministic
and stochastic approaches thus computed are 16,855,996 and
17,619,252 euros, respectively which are not far from the model
expected profits in Table 6, 16,870,731 and 17,608,877 euros,
respectively. Other relevant sample parameters can be found in
Table 7.

For a more precise comparison of the previous random profits,
their empirical Cumulative Distribution Function (CDF) can be
used (see Fig. 6). Since the deterministic approach CDF is above the
stochastic approach CDF, we can conclude that decision xnS has
first-order stochastic dominance over decision xnEV [19]. Therefore
decision xnS can be ranked as superior to decision xnEV from a
probabilistic point of view (on top of a better expected profit).
Notice that the these CDFs give useful further information as,
for example, the percentage of scenarios with shortfall (i.e.,
scenarios whose profit is below a given threshold) or the expected
shortfall.

4.4. Determining the optimal allocation for a given budget

To compute the optimal budget one assumes that there is no
limit on the available spending, as in the previous section. However,
very often managers have to allocate a limited advertising budget.
This can be done by imposing the following budget constraint in the
MAB model:X
tjkATJK

ctjk gtjkrb: ð26Þ

Notice that this is a particular case of constraint (21). Under this
model, the advertising budget b is allocated among all the advertising
channels for the different products and along all the periods. Of
course, many other kind of constraints could be considered: the
company could be interested in limiting the advertising budget within
each time period, it could be interested in imposing a threshold for

Fig. 3. Optimal budget allocation gn
t for advertising channel 1 of product P1: Deterministic approach versus stochastic approach.

Fig. 4. Sample probability distribution of the profit (euros) that may be obtained
with the deterministic approach (sample expected profit 16,855,996 euros).

Fig. 5. Sample probability distribution of the profit (euros) that may be obtained
with the stochastic approach (sample expected profit 17,619,252 euros).

Table 7
Statistical parameters for the sample of profits in euros (deterministic and
stochastic approaches).

Deterministic Stochastic

Min 11,814,360 12,483,785
Max 21,071,046 21,242,252
Mean 16,855,996 17,619,252
Median 16,895,003 17,678,295
Standard deviation 1,305,596 1,093,411
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the adstock variables at the end of the planning horizon, it could
impose a budget for each advertising channel, etc.

For example, if we were limited to 50% of the optimal budget as
computed in Section 4.2, problem MABS should be solved with
b¼ 2;175;020 euros in (26). Table 8 shows the results obtained for
both cases: optimal budget versus reduced budget. Observe that by
reducing 50% (2,175,020 euros) the optimal budget for the 12
months, the optimal expected profit is reduced by 5.86% (1,032,054
euros). As an example, Fig. 7 depicts the budget allocation corre-
sponding to advertising channel 1 of product P1 obtained by the two
approaches.

4.5. Model sensitivity

In this section we study the sensitivity of the model under
parameter perturbations. More specifically we study the effect that
parameter perturbations produce on the optimal profit of each
model, namely EV, SP and EEV.

Table 9 shows the results of the test instances under considera-
tion. Instance I-01 is the reference one and corresponds to the

MAB instance analyzed in Section 4.3. Instances I-02 and I-03, with
labels ‘p þ25%’ and ‘p �25%’, correspond to the related modifica-
tions of I-01, such that all the profit parameters fptjgtjATJ have
been increased and decreased by 25%, respectively, and all the
other parameters remain unchanged. Instances I-04 to I-15 corre-
spond to the 725% changes indicated in the table under the
heading ‘Parameter’.

Regarding the CPU time for problem solving, the EV and SP
solutions have been obtained in a few seconds and around 1 min,
respectively, for each of the instances. Observe that the inequality
EEVrSPrEV holds for all of the instances, in accordance with
Proposition 4 in Appendix A. Therefore, as we already pointed out,
problem EV has two clear disadvantages compared to problem SP,
namely, a worse expected profit (given by EEV) and an erroneous
estimation of this expected profit (given by EV). As reported in the
last line of Table 9, on average and in this context, a ’SP manager’
would have an expected profit 4.43% better than an ‘EV manager’.
Also on average, the expected profit estimation given by an ‘EV
manager’ would have an error of 37.82%, since notice that the
expected profit estimation is EV¼23,285,491 euros and the true
expected profit is EEV¼16,895,879 euros.

5. Concluding remarks

The main contribution of this paper is to introduce a stochastic
model for the Multiperiod Multiproduct Advertising Budgeting

Fig. 6. It is more likely to obtain a low profit by using the deterministic approach.

Table 8
Expected profit for the optimal budget and the reduced budget (stochastic
approach).

Optimal budget Reduced budget Variation (%)

Budget 4,350,039 2,175,020 �50.00
Expected profit 17,608,877 16,576,823 �5.86
CPU time (s) 54 40

Fig. 7. Optimal budget allocation gn
t for advertising channel 1 of product P1 considering the optimal and the reduced budget, respectively.

Table 9
Model sensitivity (results in euros): I-01 is the reference instance. The other ones
have been generated by perturbing in þ25% or �25% the indicated group of
parameters in I-01.

Instance Parameter Perturbation (%) EEV SP EV

I-01 16,870,731 17,608,877 23,276,709
I-02 p þ25 22,125,135 23,154,999 30,060,925
I-03 p �25 11,766,665 12,248,365 16,590,051
I-04 c þ25 15,964,539 16,626,972 22,395,841
I-05 c �25 17,925,287 18,775,761 24,252,711
I-06 ~y0 þ25 16,870,731 17,608,877 23,276,709
I-07 ~y0 �25 16,870,731 17,608,877 23,276,709
I-08 α þ25 22,252,197 23,301,224 30,169,256
I-09 α �25 11,672,690 12,145,273 16,501,491
I-10 β þ25 18,347,819 19,114,247 24,135,405
I-11 β �25 14,874,176 15,563,217 22,001,988
I-12 γ þ25 16,759,756 17,484,094 23,177,511
I-13 γ �25 16,983,945 17,736,402 23,377,048
I-14 δ þ25 18,703,392 19,654,983 24,831,262
I-15 δ �25 15,450,388 16,033,161 21,958,752
Average 16,895,879 17,644,355 23,285,491

þ4.43% þ37.82%
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(MAB) problem. We call it problem MABS and it is intended to
solve the MAB problem under uncertainty, i.e., by taking into
account the randomness of the problem parameters. As far as we
know, a stochastic version of the MAB problem has not been
considered in the literature.

Problem MABS addressed in this work corresponds to a single-
stage stochastic optimization problem with deterministic feasible
set. From a theoretical point of view, it has been shown that
problem MABS is convex, thus, numerically tractable and with
global optimal solutions. We have also proven that the optimal
expected profit given by the stochastic approach is at least as good
as the expected profit given by the deterministic approach.

From a practical point of view, first, it has been shown that the
stochastic model, in comparison with its deterministic counterpart,
allows for a better allocation of the advertising investment along the
planning horizon. A MABS instance derived from a real advertising
campaign has been used as a pilot case in the computational experi-
ment, where the stochastic model has improved by 4.38% the
optimal expected profit computed by the deterministic one. Second,
it has been assessed that the deterministic approach may be
erroneous, thus misleading for managerial purposes. In the pilot
case, the expected profit estimation given by the deterministic
model has shown an error of almost 38% compared to the true
expected profit (given by the expected profit of using the
expected value solution). Third, it has been shown by example
that the MABS model can be used not only to compute the
optimal budget, but also for optimally allocating any budget
combined with other managerial constraints. For example, it has
been observed that, by reducing 50% the optimal budget, the
advertising expected profit drops 5.86%.

Therefore, we can conclude that it is important for advertising
budgeting to consider effective stochastic models as the one
presented in this work. In this case, for a slightly higher conceptual
and computational effort, the stochastic model MABS may signifi-
cantly improve the deterministic model MABEV in two aspects:
higher expected profit and more reliable results.

Finally, we would like to point out some limitations of the
MABS model here presented. The first limitation is that this
stochastic model is risk neutral. That is, it is based on the expected
profit and it does not incorporate any risk measure to cope with
the cases of high variability of the profit over the scenarios as, for
example, conditional Value-at-Risk [29,33,34] and stochastic dom-
inance [16,18,19] among others. The second limitation is that the
model does not take the product price as a sales driver [37], i.e., as
a decision variable (notice that prices are input data in the current
version of the model). The third limitation is that the model does
not take into account the competitive or cooperative aspects of
advertising budgeting [26]. As a sequel of this paper, we are
planning to improve this version of the MAB model regarding
these three aspects. Furthermore, we will study the advantage of
using a two-stage or a (restricted) multistage approach to the
problem by clustering consecutive periods into stages and taking
stage-based decisions allowing then recourse actions.
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Appendix A. Theoretical results

In Proposition 1 we review some classical results which are
basic but useful in this context (notice that we use some notation
defined in Sections 2 and 3). The other propositions concern the
MAB problem introduced in this paper.

Proposition 1.

1. (Jensen's inequality [21]) Let ξ be a random vector such that
E ξ
� �¼ ξ and GðξÞ be a convex function. Then

GðξÞrE½GðξÞ�:

2. Let ξ be a random vector and Fðx; ξÞ be a convex function in ξ.
Then

min
xAD

Fðx; ξÞrmin
xAD

E Fðx; ξÞ� �
:

3. If Fðx; ξÞ is a convex function in ξ then

Fn

EV rFn

SrFSðxnEV Þ:

4. If Fðx; ξÞ is a convex function in x, then PEV is a convex optimiza-
tion problem (i.e., minimization of a convex cost function and
convex feasible set).

5. If Fðx; ξÞ is a convex function in x for all ξAΞ, then PS is a convex
optimization problem.

Proposition 2. If each ðαtjk;βtjkÞ, for all tjkATJK, is a pair of
independent random variables, then E Pðx; ξÞ� �

can be computed as
follows:

E Pðx; ξÞ� �¼ X
tjkATJK

(
ptj E½αtjk� 1�E e�βtjk ytjk

h i� �
þ
X
iAI

pti E½γtijk� ytjk:

�ctjk gtjkþztjk

)
; ð27Þ

where α tjk ¼ E½αtjk� and γ tjk ¼ E½γtjk�. Furthermore, if bξ is an approx-
imation of ξ based on the set of scenarios fξsgsAS with respective
probability weights fwsgsAS such that

ξs ¼ ðαs
tjkÞtjkATJK; ðβs

tjkÞtjkATJK; ðγstijkÞtijkATIJK; εs
� �

sAS;

then

E Pðx; bξÞh i
¼

X
tjkATJK

(
ptj α tjk 1�E e�bβ tjk ytjk

� 	� �
þ
X
iAI

pti γ tijk ytjk:

�ctjk gtjkþztjkðgÞ
)
; ð28Þ

where α tjk ¼
P

sASw
sαs

tjk, γ tijk ¼
P

sASw
sγstijk and

E e�bβ tjk ytjk

� 	
¼P

sASw
se�βs

tjk ytjk .

Proof. Eq. (27) follows by considering two basic results in prob-
ability. The first one is that E½�� is a linear operator such that
E½k1Xþk2Y� ¼ k1E½X�þk2E½Y � for any pair k1; k2 of constants and
any pair X;Y of random variables. The second one is that
E½XY � ¼ E½X� E½Y� for any pair X;Y of independent random variables.
Eq. (28) comes from the fact that E½bξ � ¼P

sASw
sξs. □

Proposition 3. Problem MABS is a convex optimization problem.

Proof. For a fixed ξs, the cost function Fðx; ξsÞ is convex in x if αtjk
s

and βs
tjk are positive for all tjkATJK (see [4]). This condition is

satisfied since, αtjk
s and βs

tjk, for all tjkATJK, are positive para-
meters in problem MABS. Then, Fðx; ξsÞ is a convex function in x for
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all sAS and by Proposition 1, problem MABS is a convex optimiza-
tion problem (notice that the feasible set D is convex since it is
defined by linear constraints). □

Proposition 4. Problem MABEV is a convex optimization problem.

Proof. Analogous to the proof of Proposition 3. □

Proposition 5. If each ðαtjk;βtjkÞ, for all tjkATJK; is a pair of
independent random variables then for problems MABEV and MABS
it results

Fn

EV rFn

SrFSðxnEV Þ:

Proof. Given the scenario-based random vector bξ ¼ ðbα ; bβ ; bγ ; bεÞ>
and its component bβ ¼ ðbβ tjkÞtjkATJK, we define the following
auxiliary function:

Q ðx; bβÞ ¼ X
tjkATJK

(
ptj α tjk 1�e�bβ tjk ytjk

� �
þ
X
iAI

pti γ tijk ytjk:

�ctjk gtjkþztjk

)
:

It is clear that E½Pðx; bξÞ� ¼ E½Q ðx; bβÞ� for all x. Therefore
FSðxÞ ¼ �E½Q ðx; bβÞ�. Similarly, Pðx; E½bξ�Þ ¼ Q ðx; E½bβ �Þ for all x. There-
fore FEV ðxÞ ¼ �Q ðx; E½bβ �Þ. This implies that Q could be used instead
of P to define problems MABS and MABEV. On the other hand, it is
easy to see that �Q ðx; bβÞ is a convex function in bβ . The proof can
be completed by applying Proposition 1. □

Algorithm 1 (Finite support random variable approximation to a
continuous random variable). Let us consider the index sets
L¼ f1;…; Lg; R¼ f1;…;Rg; S ¼ f1;…; Sg, the continuous random
vector ξ¼ ðξ1;…; ξRÞ> and the set of realizations (scenarios)
fξsgsAS with corresponding probability weights fwsgsAS . In this
context, each random variable ξr for all rAR, can be approximated
by a finite support random variable ~ξr constructed form the set
fðξsr ;ws

rÞgsAS as follows:

1. Set L, the cardinal of the support of ~ξr .
2. Define the interval I¼ ½minfξsrgsAS ;maxfξsrgsAS �.
3. Partition I into L non-intersecting subintervals of equal length

such that

I¼ ⋃
lAL

Il:

4. Define ~ξ
l
r as the middle point of interval Il for all lAL.

5. Define πl
r ¼

P
sASfws∣ξsrAIlg.

6. Then the set fð ~ξ l
r ;π

l
rÞglAL defines a finite support random

variable that we name ~ξr and that approximates the contin-
uous random variable ξr such that

P ξrAIl
� �

� P ~ξr ¼ ~ξ
l
r

� �
¼ πl

r lAL: □

Notice that the set of probability values fπl
rglAL is an approxima-

tion to the marginal probability density function of ξr that we
denote by f r , for all rAR. As pointed out in [11], the information
about the degree of stochastic dependence of the components of
vector ξ is not incorporated into the marginal density functions f r .
As a consequence, although the marginal distributions of fξrgrAR
can be derived from their joint distribution, it is not possible to
reconstruct the joint distribution of fξrgrAR from their marginal
distributions without additional information. Thus, although in the
original scenarios fξsgsAS the components ξr may be correlated

across rAR, the marginal probability density functions treat each
ξr as an independent random variable for all rAR.

Appendix B. Regression models and Bayesian inference

From a statistical point of view, the sales function in Eq. (6)
corresponds to a regression model nonlinear in the parameters
where the sales, say ~S , is the dependent variable and the advertising
investment g is the independent variable. Notice that, although
regression literature normally uses the notations Y and x, we will
use ~S and g instead, in order to maintain the same notation through
the paper. Next we give some basic properties regarding regression
models and Bayesian inference. Usually one distinguishes two types
of regression models: linear and nonlinear models in the para-
meters [14]. To simplify the exposition we restrict ourselves to the
simple regression case, i.e., one independent variable g, knowing
that these results can be generalized to multiple regression.

The simple regression model linear in the parameters corre-
sponds to

~S ¼ αþβgþε;

where α and β are the unknown regression parameters and ε is
the Gaussian random error, such that ε
Nð0;σ2Þ. In order to
emphasize the functional dependence of g we will write
~S∣g¼ αþβgþε.

In regression models one is interested in E½ ~S∣g�, the expected
value of the dependent variable for a given value of the indepen-
dent variable. Taking into account that E½ε� ¼ 0; this expected value
can be estimated as follows:

E½ ~S∣g� � α̂nþ β̂
n

g; ð29Þ
where α̂n and β̂

n

are the least square estimates of the unknown
parameters α and β, respectively, that can be computed as follows.
Given the data points ðg1; ~s1Þ;…; ðgn; ~snÞ, compute:

α̂n ¼
Pn

i ¼ 1ð~si�sÞðgi�giÞPn
i ¼ 1 ðgi�gÞ2

β̂
n ¼ s� α̂ng

g ¼ 1
n

Xn
i ¼ 1

gi; s ¼ 1
n

Xn
i ¼ 1

~si

(see Theorem 11.1.1 in [11]). In this section we will write A� B, to
indicate that B is an estimation (approximation) of the true value
A, which is unknown.

The simple regression model nonlinear in the parameters
corresponds to

~S∣g¼ hðg; γÞþε;

where γ is the vector of unknown regression parameters, h is a
nonlinear function of γ and ε is the Gaussian random error such
that ε
Nð0;σ2Þ. In some cases, as pointed out in [14], a nonlinear
regression model can be transformed into a linear one, and
therefore can be analyzed as if it was linear. In other cases it is
not possible such a transformation and the model has to be treated
as nonlinear. For example, this is the case of the sales function in
Eq. (6):

~S∣g¼ αð1�e�βgÞþε;

where γ ¼ ðα;βÞ> is the vector of unknown regression parameters.
As in the linear case, one is interested in the expected value

E½ ~S∣g�. This expected value can be estimated by

E½ ~S∣g� � hðg; γ̂nÞ; ð30Þ
where γ̂ n is the least square estimate of the unknown vector of
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parameters γ, that can be computed as follows. Given the data
points ðg1; ~s1Þ;…; ðgn; ~snÞ, compute:

γ̂n ¼ argmin
γ̂

Xn
i ¼ 1

~si�hðgi; γ̂ Þ

 �2 ð31Þ

In contrast with the linear case, the least square approach applied
to the nonlinear one has some drawbacks [14]:

1. In general, either there is no closed-form expression for the
best-fitting parameters γ̂n or it is mathematically involved to
calculate it.

2. Usually numerical optimization algorithms are applied to
determine the best-fitting parameters and there may be many
local minima of the function to be optimized in (31).

So far, in this section we have used the so-called frequentist
inference. In order to overcome its drawbacks for the nonlinear
case above mentioned, one can use the so-called Bayesian infer-
ence. The main difference between both approaches lies is that in
the Bayesian approach the unknown parameters are treated as
random variables in every statistical inference problem. In con-
trast, the frequentist approach considers that it is not appropriate
to assign a probability distribution to a parameter but claim
instead that the true value of the parameter is a certain fixed
number whose value happens to be unknown to the experimenter
[11]. Therefore, by using Bayesian inference, γ and σ, are viewed as
a random vector γ and a random variable σ; respectively. Notice
that in this section we write unknown parameters viewed as
random variables in boldface. In this case, we have

~S∣g � hðg; γÞþε;

whose expected value can be estimated as

E½ ~S∣g� � E½hðg; γÞ� ð32Þ
Notice that we have used that E½ε� ¼ 0.

Let us define the random variables Si ¼ ~S∣gi for i¼ 1;…;n.
Suppose that ~S1;…; ~Sn are independent given g1;…; gn, γ and σ,
with ~Si having the normal distribution with mean E½hðgi; γÞ� and
variance σ2. Let us also define the vector of unknown parameters
ξ¼ ðγ> ;σÞ> . According to [20], Bayesian inference can be used to
combine initial information with new data. The initial information
could result from previous studies, theoretical considerations, etc.
Initial information about unknown parameters is expressed as a
prior probability density function ρ0ðξÞ. The new sample informa-
tion is represented by its likelihood function f nð~s∣ξÞ. Bayes'
theorem is then used to obtain a posterior probability density
function ρ1ðξ∣~sÞ, which incorporates both the initial information
and sample information:

ρ1ðξ∣~sÞ ¼
f nð~s∣ξÞρ0ðξÞ

gnð~sÞ
;

where ~s ¼ ð~s1;…; ~snÞ> is one observation of the random vector
ð ~S1;…; ~SnÞ> and gn is its marginal density function. Further details
can be found in [11,22].

Compared to the frequentist approach, the Bayesian approach
has the following (dis)advantages [36] in the context of nonlinear
regression:

1. One advantage is that the expectation E½ ~S∣g� can be estimated
straightforward by sampling from the posterior probability
density function of γ according to Eq. (32). In frequentist
inference, according to Eq. (30), one estimates this expectation
by solving the least squares optimization problem (31), which
in general is mathematically involved or requires numerical
optimization with possible local optima, as already said.

2. Another advantage is the use of a prior probability density
function, which allows the modeler to incorporate the expert
knowledge of the problem. However, how to specify an adequate
prior density function may also be seen as a disadvantage.

3. The second disadvantage of Bayesian inference is the need to
evaluate multiple integrals as, for example, the computation of
the marginal density function

gnð~sÞ ¼
Z

f nð~s∣ξÞ ρ0ðξÞ dξ;

which very often is analytically complex or intractable in the
case of nonlinear regression. With the increasing computing
power, this drawback has been overcome by using sampling
methods, in particular the so-called Markov Chain Monte Carlo
(MCMC) method. In general, these methods are computation-
ally intensive, therefore time consuming.

A complete comparison of the frequentist and Bayesian appro-
aches to nonlinear regression modeling can be found in [36].
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