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Abstract

Environmental awareness and legislative pressures have made manufacturers responsible for the take-back and end-of-life

treatment of their products. To competitively exploit these products, one option is to incorporate used components in ‘‘new’’ or

remanufactured products. However, this option is partly limited by a firm’s ability to assess the reliability of used components. A

comprehensive two-step approach is proposed. The first stage phase statistically analyzes the behavior of components for reuse. A

well-known reliability assessment method, the Weibull analysis, is applied to the time-to-failure data to assess the mean life of

components. In the second phase, the degradation and condition monitoring data are analyzed by developing an artificial neural

network (ANN) model. The advantages of this approach over traditional approaches employing multiple regression analysis are

highlighted with empirical data from a consumer product. Finally, the Weibull analysis and the ANN model are then integrated to

assess the remaining useful life of components for reuse. This is a critical advance in sustainable management of supply chains since

it allows for a better understanding of not only service requirements of product, but the remaining life in a product and hence its

suitability for reuse or remanufacture. Future work should assess: (1) reduction in downtime of process equipment through the

implementation of this technique as a means to better manage preventative maintenance; (2) reduce field failure of remanufactured

product; (3) selling-service strategy through implementation of the proposed methodology.
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1. Introduction

Considering the limits of natural resources, drama-

tically increasing global population and the effects of

environmental impacts, products need to be considered

for their entire life cycle from design, manufacture, and

sale, through to use and end-of-life in order to optimize

the production processes and to reduce impacts on the
* Corresponding author.

E-mail address: m.mazhar@UNSWalumni.com (M.I. Mazhar).

0272-6963/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.jom.2007.01.021
environment. Manufacturers have encountered increas-

ing pressures from both governments and environmen-

tally focused groups to ‘reduce’, ‘recycle’ and ‘reuse’

their industrial waste (Linton et al., 2002). The

introduction of international and national legislations

on industrial production and waste management are

demanding remarkable changes in the manufacturing

culture. These regulations make the Original Equipment

Manufacturer (OEM) responsible for the end-of-life

treatment of their products (Seliger et al., 2004). This

follows the principle of Extended Producer Responsi-

bility (Klausner and Hendrickson, 2000) according to
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which producers should be responsible for the entire life

cycle of their products and especially for the take-back,

the recycling and the final disposal of their products

(Kiritsis et al., 2003). Thus, supply chain management

needs to focus on the integration of activities across the

whole life of the product including recycling, reuse, and

final disposal of products. To embrace these challenges,

increasing interest in promoting an inverse supply chain

(Shibata et al., 2001) and sustainable production has led

many companies to scrutinize the ways in which they

deal with the end-of-life treatment of their products.

Depending on the product type, manufacturers

choose between methods of reuse, recycling, incinera-

tion and disposal. Minimizing Wasted Resources

(Yamagiwa et al., 2001) can be achieved by two

strategies—product recovery through product reuse and

material recovery through recycling. Manufacturers are

struggling to find ways to smooth the flow of returned

products and to recover maximum value from these

products. This goal can best be achieved by selecting

the higher levels of material recovery such as reuse.

Research reveals (Fleischmann et al., 1997) that

economical and ecological motivation is the driving

force behind increasing interests in reuse in the recent

past. Reuse is more environment friendly than recycling

or first-time manufacturing as remanufacturing

(through reuse) uses fewer materials and less energy

since it reuses several parts from the used product

(Ferrer and Whybark, 2001). Products returns continue

to grow in volume worldwide, in part due to customer

service and laws pertaining to manufacturer responsi-

bility. These developments require companies to

explicitly consider the product reuse in the early stages

of new product development (Guide et al., 2003b).

Remanufacturing and recoverable manufacturing sys-

tems (Guide et al., 2000), in which parts are reused, are

at the heart of reverse logistics (Dowlatshahi, 2000).

Revalorization (Parkinson and Thompson, 2003)

through reuse of a product or its components would

yield an economically competitive treatment of

products as it would reduce the energy required to

process raw material and components and make less

demand on the environment by preventing premature

discarding of products. Several other researchers

(Griese et al., 2004; Guide et al., 2003a; Kaebernick

et al., 2002; Kobayashi, 2001) have also emphasized

that the reuse of the components, subassemblies or the

entire product is a competitive and efficient strategy.

Reusing of used parts has already been applied to

industrial products. For instance, parts are reused in

products such as one-time-use cameras, photocopying

machines and toner cartridges of printers in Japan
(Okumura et al., 2001). A wide-spread implementation

of the reuse strategy could be triggered, subject to the

availability of reliable methods to assess the useful

remaining life of parts.

Since the essential goal of the reuse strategy is to

reuse parts, the reliability of used parts becomes a

central point. Research indicates (Kara et al., 2004;

Klausner et al., 1998) that reuse is technologically

feasible, associated with a significant manufacturing

cost saving, and it does not compromise product quality.

However, it is not easy to be applied in reality. There are

several uncertainties associated with reuse, the most

common is the uncertainty of the product’s quality after

use (Kaebernick et al., 2001, 2002). The unavailability

of reliable methods to assess the reliability of used parts

is one of the major barriers in reusing used parts. The

evolution of such a methodology would play a pivotal

role in making decisions on the supply chain process

and the recovery value of returned products.

Reliability assessment by life cycle data analysis is

the basis of the proposed methodology. The suggested

strategy considers statistical as well as condition

monitoring data analysis for decision-making on reuse.

The methodology addresses the problem of reliability

assessment of used parts by considering two important

aspects. Firstly, it assesses the overall reuse potential of

components with a clear understanding of the failure

mechanism. Secondly, it determines the actual (used)

life of the components by analyzing the operating

history of components.

2. Estimating the remaining useful life

The remaining useful life is a function of the

component’s overall life and the actual (used) life under

the operating conditions of use. Mathematically,

LR ¼ LM � LA (1)

where LR is the remaining useful life, LM the mean life

and LA represents the actual life of components under

given conditions of use. LM and LA represent two

distinct perspectives – static and dynamic – and there-

fore they need to be addressed accordingly. LM basically

represents the component’s total functional life under

stated conditions of use, and it is estimated by analyzing

time-to-failure data of a family of components operated

under the same conditions of use. The accuracy and

authenticity of the LM estimation becomes better with

increasing amounts of available statistical data. On the

other hand, LA is dynamic in the sense that it mainly

depends upon the real conditions of use, and its assess-

ment is based on the actual conditions of use.
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2.1. Mean life LM

The mean life is determined by analyzing time-to-

failure data of the same category of components under

the same conditions of use. Time-to-failure data was

collected for the electric motor and the gearbox of a top

loading washing machine from the leading manufac-

turer of home appliances in Australia.

Weibull analysis (Cole, 1998; Li, 2004; ReliaSoft-

Corporation, 2001), extensively utilized in maintenance

procedures, is a powerful tool for reliability assessment

that can be used to classify failures and to model failure

behaviour. The methodology has applications in a wide

range of industries such as military, automotive, elec-

tronics, composites research, aerospace, electrical power,

nuclear power, dental research, advertising, even the mor-

tality of mailing lists (Abernethy, 1993). Weibull analysis

can be used to determine the optimum replacement/repair

interval for components, subject to wear-out failure. The

very common form of the Weibull distribution is

FðtÞ ¼ 1� exp

�
�
�

t

h

�b�
; (2)

where F(t) represents the fraction of units failing and ‘t’

is the time-to-failure. The distribution is characterized

by two parameters, the scale parameter h and the shape

parameter b. The value of the parameter b identifies the

mode of failure. For example, b < 1 means infant

mortality, b = 1 indicates random failure and b > 1

describes wear-out failure. The scale parameter h is

defined as the life at which 63.2% of units will fail.

The mean life LM is measured by using the

relationship between the scale parameter h and gamma

function (G) of the shape parameter b.

LM ¼ hG

�
bþ 1

b

�
(3)

The results for the washing machine as shown in Table 1

indicate that the electric motor and gearbox possess

immense potential to be considered for reuse.

One of the most import aspects of the above results

are the remarkably high values of the shape parameter,

which show that both of these subassemblies follow a

well defined wear-out failure mechanism. These high
Table 1

Weibull analysis results (Mazhar et al., 2004)

Gearbox Electric motor

Shape parameter (b) 3.2 4.973

Scale parameter (h) (years) 35.44 46

Mean life (years) 31.74 42.26
values also associate a higher level of certainty to the

mean life estimates.

2.2. Actual (used) life LA

As discussed above, the proposed procedure for life

estimation is aimed at making reuse decisions by

analysing the operating data collected during the usage

phase of a product. One of the major obstacles for the

development of a methodology based on life cycle data

analysis is the unavailability of operating information,

particularly in the case of consumer products such as

washing machines, refrigerators, etc.

In order to collect operating data of a washing

machine, accelerated lifetime testing was carried out in

the laboratory. The acceleration is basically usage rate

acceleration (ReliaSoft-Corporation, 2001) in which the

machine operates continuously. The other conditions

and assumptions (Mazhar et al., 2005) are:
� t
op loading medium size washing machine;
� a
tmospheric pressure, ambient temperature, pressure

and humidity;
� a
verage operational load;
� w
ater level medium;
� m
achine operating continuously for 24 h a day, 7 days

a week;
� a
verage household load—40 min per wash cycle, 10

wash cycles per week.

The following parameters have been monitored and

recorded during the spin cycle of the washing machine:

motor rotation speed, winding temperature, power,

current and voltage. The spin cycle was selected

because this is the only cycle during which the motor

spins in a single direction. Furthermore, to ensure

consistency in data recording, the data was always taken

at the same moment in time (i.e., just before the spin

cycle ends) during the complete cycle.

Fig. 1 shows the behaviour of some of the monitored

parameters over the life of the machine. It can be seen

that motor speed and power are related to the age of the

machine in the first 16 and 9 years of operation

respectively. However, the winding temperature shows a

delayed and slow trend in the later years of the machine

age.

Previous studies (Mazhar et al., 2004, 2005) show

that regression analysis and dynamic kriging method

can be employed to determine the used life of

components at given conditions of use. However, these

techniques are only suitable under particular conditions

(Kara et al., 2005). For example, regression analysis
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Fig. 1. Life cycle data: (a) motor speed, (b) temperature, (c) power, and (d) voltage.
produces reasonably acceptable results in situations

where the input variables follow a well-defined positive

trend over the age of the machine, but this method has

been found struggling to maintain its estimation

accuracy when the input variables exhibit a complex

trend. This fact is explained by conducting regression

analysis on different sections of data as the behaviour of

functional parameters keeps changing over the entire

age of the washing machine. The regression coeffi-

cients, as shown in Table 2, were calculated by the

method of least squares estimation (Albright et al.,

1999). The actual (used) life is then determined by the
Table 2

Regression coefficients at different years of machine life

Year Parameter

b1 b2 b3

10 239.0751 36.0916 �88.6174

11 0.5988 �0.0423 �0.1169

12 0.6749 �0.0116 �0.0635

13 0.6989 �0.0254 �0.0547

14 0.7221 �0.0108 �0.0282

15 0.8103 0.0095 0.0606

16 0.6821 0.0491 0.0066

17 0.7559 0.0784 0.0979

18 0.7524 0.2555 0.0999

19 0.7553 0.4973 0.0521

20 0.7730 0.5753 0.0837

21 0.8047 0.7110 0.1116
following regression equation:

LA ¼ aþ b1ðrpmÞ þ b2ðtmpÞ þ b3ðpowÞ
þ b4ðcurÞ þ b5ðvolÞ (4)

The output is compared by estimating the R2 at every year

starting from the 10th year of the machine age by con-

sidering all the data until that particular year. The results

of the detailed stepwise regression analysis as shown in

Fig. 2 reveals the fact that the motor speed is the dominant

parameter in establishing a good correlation between the

estimated and experimentally measured machine life.
b4 b5 a

11450.7949 �33.4411 �319890

27.0683 0.0359 �859.2130

22.8489 �0.0623 �955.0391

24.8532 �0.0694 �993.2748

25.0357 �0.0901 �1030.9558

10.0190 �0.1111 �1152.913

59.5659 �0.5457 �933.6174

46.4665 �0.6421 �1027.3751

49.0128 �0.7374 �1009.9026

57.0808 �0.7683 �1012.0664

64.4035 �1.0899 �985.4825

52.730 �1.0477 �1034.2963
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Fig. 2. Contribution to R2 by functional parameters.

Fig. 3. Structure of the proposed neural network. Where P is input to

the model, LA the output of the model (actual life of component at

given conditions), Si number of neurons in layer i, n number of layers

in the model, yi output of layer i, fi the transfer function in layer i, IW

the input to layer 1 weights, LWi,j layers weights from layer j to i, bi the
The correlation coefficient R2 is heavily dependent

on motor speed, particularly in the first 15 years of

machine life. The contribution of the other four

parameters (temperature, power, current and voltage)

is noticeably very low. However, the temperature shows

an increasing trend in the later years of machine age

whereas power demonstrates a very consistent, although

not very significant, behaviour over the entire age of the

machine.

The decline in R2 in the later years of machine age is

contributed to the fact that regression analysis is unable

to handle the complex and fluctuating behaviour of

monitored parameters.

2.2.1. Neural network approach

Neural networks are becoming more popular among

researchers because of their proven ability to recognize

complex relationships between input and output

variables. Artificial neural networks are adaptive and

have parallel information-processing structures that

have the ability to build functional relationships

between data and provide a powerful toolbox for

nonlinear, multidimensional interpolations. This aspect

of neural networks makes it possible to capture and

interpret the existing highly complex nonlinear relation-

ships between input and output parameters that are most

of the time not well understood (Eskandari et al., 2004).

2.2.1.1. The proposed model. The proposed neural

network model is a multilayer feed-forward back-

propagation (Haykin, 1999) neural network as shown in

Fig. 3. The back-propagation neural network model has

the advantages of handling nonlinear problems with

learning capability (Zhang and Qi, 2005).

The layer outputs of the network are given as:

y1 ¼ f 1ðIW1;1Pþ b1Þ (5)
y2 ¼ f 2ðLW2;1y1 þ b2Þ (6)

y3 ¼ f 3ðLW3;2y2 þ b3Þ (7)

LA ¼ y3

¼ f 3ðLW3;2 f 2ðIW2;1 f 1ðIW1;1Pþ b1Þ þ b2Þ þ b3Þ
(8)

LA ¼ PurelinðLW3;2TansigðIW2;1TansigðIW1;1Pþ b1Þ
þ b2Þ þ b3Þ (9)

To make the back-propagation neural network more

flexible in terms of acknowledging complex relation-

ships it is important to be able to calculate the deriva-

tives of any transfer functions used. Both of the transfer

functions—tansig and purelin used in the pro-

posed network have a corresponding derivative function

dtansig and dpurelin, respectively.

The architecture of the proposed network of a three

layer network is shown in Fig. 3. It consists of two hidden

layers of sigmoid (tansig) neurons followed by an

output layer of a linear neuron (purelin). The purpose

of hidden layers with nonlinear transfer functions is to

allow the network to learn nonlinear and linear

relationships between input and output variables. The

linear transfer function in the output layer lets the

network produce outputs outside the range [�1,1].

2.2.1.2. The data. One of the major problems with

neural network models is the requirement of huge

amounts of data before a network can be trained to

produce acceptable results (Lucifredi and Mazzieri,

2000). At the same time it is very difficult to gather a

sufficient amount of condition monitoring information,

particularly in consumer products.

To fulfil the data requirement, a statistical basis for

random data generation was established by conducting

statistical data analysis of the lifetime testing data,

collected by the accelerated lifetime testing of a

washing machine. Analysing the condition monitoring

bias in layer i, fi is the transfer function for the output of layer i.
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data by employing the most commonly used 95%

statistical control limits, yields the lower and upper

control limits for generating the random data. The data

generation procedure is detailed below:
(a) P
lotting the measured data. For example, speed

versus age of the washing machine. In this case,

there are 180 data points recorded over the 21-year

age of the machine.
(b) D
etermining the best fit. In this case, it is a ninth

order polynomial.
(c) A
pplying 95% control limits and determining the

upper and lower control limits (UCL and LCL). As

shown in Fig. 4, the calculated control limits provide

a reasonably wide space to allow more variation in

the data generation process.
(d) G
enerating random data points. Every time, 180

data points are generated randomly over the age of

machine (0–21).
(e) G
enerating a random value of the functional

parameter (e.g. speed) between the UCL and LCL

at each of the randomly generated data points in the

above step.
(f) R
epeating the step ‘e’ for all of the five functional

parameters.
A total of 3600 data points were generated by this

procedure. Including the experimentally measured data,

the neural network training and test data set has 3780

data points altogether.

This procedure produces unique combinations of

condition monitoring parameters as every data value is

generated randomly. Furthermore, the data generation

algorithm produces more scattered data as the LCL and

UCL provide more space than the area occupied by the

experimental data.

2.2.1.3. Principal component analysis. There is a very

useful function prepca in Matlab. This function is
Fig. 4. Statistical data analysis—motor speed (rpm).
used to eliminate the highly correlated (redundant)

components of the input vectors. The procedure

prepca preprocesses the network input training set

by applying a principal component analysis. This

analysis transforms the input data so that the elements

of the input vectors will be uncorrelated. In addition, the

size of the input vectors may be reduced by retaining

only those components which contribute more than a

specified fraction of the total variation in the data set. In

this study, the function prepca has been used to

eliminate those principal components that contribute

less than 3% to the total variation in the data set.

The results indicate that there was significant

redundancy in the training data set since the principal

component analysis has reduced the size of the input

vectors from 5 to 3. Vectors representing current and

voltage are eliminated. Interestingly, these findings are

very consistent with the results of the stepwise

regression analysis.

2.2.1.4. Training the network. The training style is the

supervized learning in which the learning rule is

provided with a set of examples (the training set) of

proper network behaviour. The training set consists of

inputs and the corresponding correct outputs (targets).

One of the most powerful learning algorithms, the

Levenberg–Marquardt algorithm (Haykin, 1999), has

been used to train the network. On function approx-

imation problems, this algorithm is considered to be one

that has the fastest convergence. One of the problems

that occur during neural network training is ‘over-

fitting’ or ‘over-training.’ In this case, the network

memorizes the training examples but it has not learned

to generalize to new situations. The MATLAB function

trainbr, which was used to train the proposed

network, has a built-in procedure, Bayesian regulariza-

tion, a technique designed to overcome the over-fitting

problems. This technique has been documented as a

better generalization procedure for function approx-

imation problems.

To produce the most efficient training, the input data

has been pre-processed before training. The selected

training function (trainbr) works best when the

network inputs and targets are scaled so that they fall

approximately in the range [�1,1]. This pre-processing

has been done by using the function prestd.

2.2.1.5. Network optimization and performance test-

ing. The architecture of a multilayer network is not

completely constrained by the problem to be solved.

The number of inputs to the proposed network is given

by the number of available inputs (speed, power and
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temperature), and the number of neurons in the output

layer is constrained to one as the output required

contains one parameter (actual life of machine) only.

However, the number and size of layers between

network inputs and output layer are determined by

testing several combinations of numbers of layers and

the number of neurons in each layer. Each of the

selected combinations is tested with several different

initial conditions to guarantee that the proposed model

is the best solution. The resulting network consists of

three inputs, two hidden layers of 20 and 50 neurons

respectively and an output layer of one neuron.

After the training was completed, the network was

tested for its learning and generalization capabilities.

The test for its learning ability was conducted by testing

its ability to produce outputs for the set of inputs (seen

data) that was used in the training. For this purpose, 154

out of 180 experimentally measured data points were

selected and it was observed that the network’s outputs

had a correlation coefficient of about 0.866 with the

desired (actual) outputs (Fig. 5a).

The test for the network’s generalization ability was

carried out by investigating its ability to respond to the

input sets (unseen data) that were not included in the

training process. The test data set was created by

picking the data as equally spaced points throughout the

experimentally measured data. A total of 26 out of 180

experimentally measured data points were selected. It

was observed that outputs had a correlation coefficient

of about 0.81 with the desired outputs of test data. The

results are shown in Fig. 5b.

3. Analysis and discussion

Artificial neural networks have been widely used for

various prediction and forecasting problems, ranging

from engineering to business applications. Their

flexible nonlinear modelling ability is predominantly

useful for many complex real-world problems.

This study investigates the effectiveness of neural

networks for estimating the remaining life by analysing

complex and nonlinear life cycle data. The research

further explores and highlights the advantages of using

artificial networks over multiple regression for the
Table 3

Comparison of estimation accuracy—ANN model and regression analysis

Remaining life estimation method R2

Seen data

ANN model 0.866

Regression analysis 0.5539
development of a reliability assessment model based on

life cycle data analysis.

The multiple regression method produced good

results during the first 15 years of machine life, but

when applied to the whole life span (21 years) of the

washing machine, the correlation coefficient was very

low (below 60%). On the other hand, the proposed

neural network has the ability to adapt data that has been

presented to it in the form of input–output patterns. The

model’s output was obtained and compared to the

experimentally measured values by using the postreg
function. This function basically performs linear

regression between targets (experimentally measured

values) and the network response to the presented inputs

(condition monitoring data). The model’s response to all

the three sets of life cycle data was remarkably accurate

especially for the seen and entire data sets as shown in

Fig. 5a and c.

A comparison summary as given in Table 3 shows

that regression analysis is no longer capable of

producing reasonable results in situations where

input–output relationships are nonlinear and complex.

Whereas, once trained, the neural network model yields

outputs very closely related to the desired outputs.

The proposed model can be used to estimate the

remaining useful life of components at the given

conditions of use. The mean life LM remains the same

for this particular category of washing machine

components, whereas the actual (used) life LA is

determined by the neural network at the given

conditions (speed, temperature and power). Eq. (1) is

then used to determine the remaining useful life. Table 4

shows an example of how the proposed methodology

determines the remaining useful life of a component

(motor in this case) at the given conditions.

Remaining life estimation with nonlinear inputs is

far more complicated than with linear inputs, especially

in the case of an intricate mixture of fluctuating and

unpredictable trends.

The results produced by the proposed integrated

methodology for remaining life assessment are asso-

ciated with higher levels of certainty due to the fact that

in both stages of the analysis well-known reliability

assessment and statistical analysis techniques have been
Unseen data Entire data

0.81 0.857

0.5288 0.5451
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Fig. 5. Neural network’s performance: (a) seen data; (b) unseen data; (c) entire data.
employed. Furthermore, the best available functions

and procedures have been utilized to pre-process the

inputs, train the network and post-process the outputs of

the model.

4. Managerial implications of the results

A sustainable society and a business can only be

achieved if the current business practice of an open-loop
system is transformed into a close-loop system by

establishing an integrated supply chain. This will allow

organizations to consider the whole life cycle of their

products from the concept design to disposal. Imple-

mentation of such a concept requires significant

changes to the way products and services are

traditionally designed. The entire product life cycle

provides opportunities to preserve resources while

reducing the environmental impact. Participation of
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Table 4

Remaining life estimates

Given conditions of use Mean life of motor

(Weibull) (years)

Used life of motor

(ANN) (years)

Remaining useful

life (years)

1

Speed 1424 42.26 11.31 30.95

Temperature 28

Power 343

2

Speed 1420 42.26 18.81 23.45

Temperature 40

Power 352
operation managers in this process is crucial since they

play a key role to reduce cost and to preserve scarce

resources at three different stages, namely design,

production, usage and disposal stages. In this environ-

ment, they are forced make decisions and provide

feedback on product and service design for the

environment, design for end-of-life, environmentally

friendly materials and process selection, maintaining

products’ functionality during the usage phase and finally

selecting an environmentally friendly end-of-life

options. The integrated approach proposed in this paper

helps operation manager in strategic and operational

decision making during the design, usage and disposal

stages of a product’s life cycle. At the design stage, it

helps the user to assess the design life built into a

component of a product. If the design life of a component

exceeds the product’s life, the component may be over

designed for the intended use unless it is designed for

reuse at the end of product’s life cycle. In this context, the

proposed methodology helps the user to make the

decision of whether the remaining life of the component

is long enough for a second life. In addition, the lifetime

data collected during the first life cycle is also invaluable

for decision making on Condition Based Monitoring

(CBM), which, based on sensing and assessing the

current state of the system, emerges as an appropriate and

efficient tool for achieving near-zero breakdown time

through a significant reduction and elimination of

downtime due to process or machine failure. Further-

more, the lifetime prediction methodologies as proposed

in this paper are one of the key elements for

implementing selling the service associated with the

product rather than selling physical products.

5. Conclusion

This paper presents an integrated approach to

estimating the remaining useful life of components

for reuse. It has been shown that once trained, the
proposed neural network model produces life time

estimates with higher levels of certainty. The results

were validated by utilizing life cycle data from a

washing machine. Furthermore, it has been shown that

motor speed, winding temperature and power can be

used for estimating the remaining life of a washing

machine electric motor.

The methodology proposed in this paper aims at

bridging the gap that currently exists in the literature by

providing a decision making tool for achieving closed-

loop systems. In this context, the integrated approach

helps users to make sound end-of-life decisions during

the product’s life cycle. Determining how this technique

can be utilized in order to reduce process and

equipments’ down time as a means of preventative

maintenance and reduce field failure of remanufactured

products would be a useful extension of this research.

Furthermore, it will be interesting to how this approach

can be used in implementing selling-service strategy,

which will be one of the strategies influencing the

manufacturing organizations in the near future.
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