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ABSTRACT

Theory and experience in metabolic engineering both show
that metabolism operates at the network level. In plants,
this complexity is compounded by a high degree of
compartmentation and the synthesis of a very wide array
of secondary metabolic products. A further challenge to
understanding and predicting plant metabolic function is
posed by our ignorance about the structure of metabolic
networks even in well-studied systems. Metabolic flux
analysis (MFA) provides tools to measure and model the
functioning of metabolism, and is making significant contri-
butions to coping with their complexity.

This review gives an overview of different MFA
approaches, the measurements required to implement them
and the information they yield. The application of MFA
methods to plant systems is then illustrated by several
examples from the recent literature. Next, the challenges
that plant metabolism poses for MFA are discussed
together with ways that these can be addressed. Lastly, new
developments in MFA are described that can be expected to
improve the range and reliability of plant MFA in the
coming years.

Key-words: central metabolism; compartmentation; iso-
topic labelling; metabolic engineering; metabolic networks;
optimal design; plant metabolism; plant systems biology;
predictive modelling; regulation.

INTRODUCTION

Plant metabolic networks are substantially more complex
than those of other organisms. This is because of several
interlinked aspects of plant life: being sessile, ectothermic
and autotrophic, and having vast chemical repertoires and a
high degree of subcellular compartmentation. Therefore, it
is not surprising that metabolic engineering (especially in
primary metabolism) has had a low success rate with, for
example, single gene alterations usually resulting in little
of the desired change in composition, yield or growth. The
relationship between phenotype and genotype is also inher-
ently complex because the functioning of individual pro-
teins or even pathways depends on the operational state of

the larger metabolic network (Kruger & Ratcliffe 2008;
Moreno-Sanchez et al. 2008). Genetic manipulation, fol-
lowed by phenotypic – even ‘omic’ – analyses, is therefore
also limited as an approach to understanding how plant
metabolism works, and there is a clear need for tools to
measure and model metabolic function (as distinct from
metabolic components) at the network level.

Metabolic flux analysis (MFA) provides such tools. MFA
quantifies the flow of material through metabolism, yielding
flux maps and can aid engineering efforts by explaining
phenotypes in detail. Experience in the metabolic engineer-
ing of improved productivity by bacteria, shows that MFA
can make substantial contributions to biotechnology. Used
in a cycle of genetic alteration followed by subsequent
analysis, MFA has allowed bacterial strain improvement for
industrial purposes (Kim, Kim & Lee 2008) by, for example,
highlighting potentially wasteful metabolic processes
(Petersen et al. 2000, 2001; Nielsen 2001; Koffas, Jung &
Stephanopoulos 2003; Koffas & Stephanopoulos 2005).
MFA has already yielded substantial new insights into the
structure and function of plant metabolic networks and
holds promise for guiding successful engineering for prac-
tical purposes in the coming years.

MFA approaches of interest here are those that focus on
obtaining estimates and models of multiple fluxes through a
metabolic network or more commonly, a sub-network, and
include systems in steady state (a constant set of metabolic
fluxes) and ones whose fluxes may be changing. MFA
approaches can be divided into several categories that
differ in the information required, the kind of model used
and the type of information obtained and are outlined in
Table 1. Whether the biological system can be evaluated in
steady state, the (sub)network size and the level of detail
with which reactions are described will determine which
MFA approaches are best suited to each system. Flux analy-
ses all begin with a reaction network description (set of
equations) that stoichiometrically relate the substrates of
each reaction to its products. Given that there are multiple
routes through the network, the stoichiometric description
represents the full range of feasible metabolic behaviours.
Elementary mode analysis (EMA; Schuster, Dandekar &
Fell 1999; Schuster, Fell & Dandekar 2000; Poolman, Fell &
Raines 2003) and extreme pathway analysis (EPA; Schill-
ing, Letscher & Palsson 2000) are structural methods that
are used to explore this range and define the boundaries of
feasible steady-state flux distributions.

At steady state, the range of flux patterns is finite but still
very large. With estimates of input and output flux values
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and an objective function (i.e. an optimization that maxi-
mizes or minimizes some particular goal such as maximal
biomass production), flux balance analysis (FBA; Varma &
Palsson 1994) yields a set of net flux values from the feasible
‘flux space’. The branching of networks creates more
unknown fluxes than stoichiometric relationships, resulting
in an under-determined system; the degree of under-
determination is especially high in primary metabolism.The
use of linear programming with an objective function is
necessary to limit this range of solutions. Still, the result
of FBA may be more than one equally optimal flux
solution set, and energy balance analysis (EBA) and
thermodynamics-based MFA (TMFA) are used to con-
strain FBA by imposing further thermodynamic consider-
ations on the network. Together, they enforce free energy
rules (e.g. the decrease in free energy through the network)
and reduce the number of solutions obtained. In general,
EMA, EPA and FBA approaches are often applied to the
full metabolic network (~1000 reactions for a microbe).This
is possible because only net fluxes are considered, no pool
size or labelling measurements are needed for the metabo-
lites, and because an acceptable outcome may entail mul-
tiple solutions. Experimentally based methods deal with
sub-networks of different sizes (Table 1).

Incorporation of isotopic labelling data allows one to
model the transition not only of metabolites, but also indi-
vidual atoms through metabolism. Mapping the transition
of atoms (almost always carbon) greatly enhances the infor-
mation content for MFA. For steady-state isotopic labelling
MFA, all fluxes are unvarying and labelling patterns in
intermediates and products are allowed to reach stable
values. Label distribution in the end products can then be
used along with mass balances to determine fluxes through-
out the network. Isotopic labelling-based steady-state MFA
results in a mathematically over-determined system (for
sub-networks of metabolism), with more information than
flux parameters and allows both net and some exchange
fluxes to be obtained without assuming an objective func-
tion. Fluxes are obtained by fitting their values in a stoichio-
metric model to the labelling data and uptake/efflux
measurements through quadratic programming. For those
tissues that can be maintained at or close to a metabolic
steady state, this approach is attractive and indeed the term
‘MFA’ is currently often applied exclusively to steady-state
analyses.Though steady-state MFA does not produce a pre-
dictive model, it is appealing because it yields flux maps
without requiring measurements of metabolite pool sizes or
the estimation of kinetic parameters, which are often diffi-
cult to obtain but which are required for dynamic (kinetic)
MFA. Additionally, any set of reactions between branch
points is combined into one step in steady-state MFA,
which dramatically reduces the number of variables to
be determined. In a kinetic/dynamic or unsteady-state
approach, fluxes need not be constant (so metabolite pool
sizes can change) and fluxes are established from time
course measurements of pool sizes and labelling. The use of
dynamic labelling experiments for single flux evaluations
and for pathway elucidation is well established in plant

biochemistry and has made enormous contributions, but is
beyond the scope of this review. With dynamic MFA, a
much larger number of independent parameters is used
because individual enzymatic and transport steps are mod-
elled, each involving multiple concentrations and rate con-
stant values.

For steady-state MFA using labelling experiments, the
system must be in a metabolic steady state long enough to
reach isotopic steady state (a stable labelling pattern in
metabolites). However, many plant tissues do not show
steady-state metabolism and/or cannot be labelled to isoto-
pic steady state under physiologically relevant conditions.
In these cases, dynamic MFA is needed to quantify multiple
fluxes though networks, and this approach has the further
advantage of yielding models that can be used to predict the
effects of genetic or other changes on metabolic fluxes and
pool sizes (Morgan & Rhodes 2002; Poolman, Assmus &
Fell 2004). Dynamic MFA is also important to identifying
and analysing regulatory points within these pathways
which is performed using metabolic control analysis (MCA;
Rees & Hill 1994; Moreno-Sanchez et al. 2008). In MCA,
the control of flux along pathways is quantitatively assigned
to different enzymes (Heinrich & Rapoport 1974; Kacser &
Burns 1981; Fell 1998). By revealing which enzymes main-
tain greatest control over flux, this method is a powerful
predictive guide for metabolic engineering efforts. In Top
Down Control Analysis (Hafner, Brown & Brand 1990),
enzymatic reactions are grouped into blocks and the MCA
analysis yields information on control of flux between, but
not within those blocks.

Recent successes in MFA have been possible because
of modern tools: nuclear magnetic resonance (NMR) and
mass spectroscopies, the availability of a range of substrates
positionally labelled with stable isotopes, and crucially,
the development of modelling theory and computational
methods. Detailed accounts of how different types of MFA
analyses are performed using these tools are given in the
literature: general overview (Stephanopoulos, Aristidou &
Nielsen 1998), FBA (Schilling & Palsson 1998; Edwards,
Covert & Palsson 2002), EMA (Schuster et al. 1999, 2000),
EPA (Schilling et al. 2000), dynamic and steady-state MFA
(Zupke & Stephanopoulos 1994; Schmidt et al. 1997;
Wiechert et al. 2001; Ratcliffe & Shachar-Hill 2006; Rios-
Estepa & Lange 2007; Steuer 2007) and MCA (Fell 1992;
Kacser, Burns & Fell 1995).As shown in Fig. 1, the outcome
of MFA may vary from a single set of flux values to a range
of possible values in ‘flux space’. The degree to which a
range or absolute set of values is established is defined by
the number and scope of constraints and experimental mea-
surements available, as well as the network complexity and
choice of MFA strategy. Different ‘omics’ data can establish
a feasible range of values for fluxes, but for networks of any
complexity, a substantial number of functional measure-
ments are necessary to determine flux values accurately.
From an MFA perspective, ‘omics’ data serve as input and
constraints for model building and solving. From an ‘omics’
perspective, the fluxome is simply another level of system-
wide description. From a Systems Biology perspective,
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MFA is qualitatively different from ‘omics’ in its attempt to
describe function rather than structure and its aim of build-
ing predictive models. In this sense of quantitative model-
ling to make predictions, MFA is more like informatics,
though in the latter the models are statistical and in MFA
they are mechanistic. Others have recently provided
surveys and guides to plant-based MFA (Ratcliffe &
Shachar-Hill 2006; Rios-Estepa & Lange 2007; Schwender
2008; Sweetlove, Fell & Fernie 2008). Here, we discuss a
small number of studies to illustrate the contributions of
MFA to our understanding of the complexities of plant
metabolism and then focus on the challenges facing MFA of
plant systems, strategies to overcome them and new
methods for future work.

MFA STUDIES ARE UNIQUELY INFORMATIVE
ABOUT THE FUNCTIONING OF
PLANT SYSTEMS

Plant tissues that have been studied using different MFA
approaches, including cultured cell suspensions (Rontein
et al. 2002; Baxter et al. 2007; Kruger et al. 2007a; Matsuda,
Wakasa & Miyagawa 2007;Williams et al. 2008), microalgae
(Yang, Hua & Shimizu 2002; Shastri & Morgan 2005, 2007;
Boyle & Morgan 2009), developing seeds (Glawischnig
et al. 2002; Schwender, Ohlrogge & Shachar-Hill 2003;

Sriram et al. 2004; Ettenhuber et al. 2005b; Schwender,
Shachar-Hill & Ohlrogge 2006; Spielbauer et al. 2006;
Alonso et al. 2007a; Junker et al. 2007; Troufflard et al. 2007;
Iyer et al. 2008; Allen, Ohlrogge & Shachar-Hill 2009;
Grafahrend-Belau et al. 2009), stem (Rohwer & Botha
2001; Uys et al. 2007), root tips (Dieuaide-Noubhani et al.
1995; Alonso et al. 2005, 2007b,c), transformed root culture
(Sriram, Fulton & Shanks 2007a), leaves (McNeil et al.
2000a,b; Poolman, Fell & Thomas 2000), flowers (Boatright
et al. 2004; Orlova et al. 2006), tricomes (Rios-Estepa et al.
2008) and tubers (Matsuda et al. 2003, 2005; Heinzle et al.
2007). Several recent studies explore the potential for,
and illustrate the challenges in, performing MFA in whole
plants (Ettenhuber et al. 2005a; Huege et al. 2007; Romisch-
Margl et al. 2007).

Seeds produce large amounts of storage reserves at
steady rates during much of the filling period, and therefore
meet the metabolic steady state requirement over a long
enough labelling period to reach isotopic steady state.
Together with their value as sources of protein, oil and
carbohydrate, this makes developing seeds attractive for
steady-state MFA. The work in developing rapeseed
embryos has led to a number of insights into novel modes of
operation of well-studied enzymes and pathways. MFA
revealed that contrary to expectations, neither the oxidative
pentose phosphate pathway (Schwender et al. 2003) nor
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Figure 1. The relationship between the distribution of metabolic fluxes and the biological and physical constraints on the system and the
measurements made on it. This is depicted in consecutive conceptual stages from left to right. Firstly, the range of all possible metabolic
flux patterns (flux space) is successively restricted by the genome, transcriptome and proteome of the system. The genome defines the
widest possible metabolic network for an organism, and the transcriptome and proteome further define the structure of the network and
therefore all possible fluxes that could be conducted by the cells under consideration. In the next stage, physical and chemical constraints
in the form of the stoichiometries and conservation of matter and energy must be taken into account, which constricts the flux space
further. Finally, an estimate of the actual flux distribution (flux map) is derived using some combination of: (1) direct measurements of a
subset of the fluxes (usually uptake, export and/or biomass accumulation rates); (2) measured metabolite levels and/or labelling patterns;
and (3) assumptions about the functional target of the system (usually applied to microbial systems as the selection pressure to maximize
growth rates in FBA analyses). At each stage, uncertainty about the possible flux distribution is introduced by uncertain gene function
and measurement errors or omissions of different sorts. This uncertainty widens the range of possible flux distributions as represented by
error bars. For some of the methods of MFA, such as FBA that are frequently mathematically under-determined (i.e. more unknown
parameters than relationships and measurements), the use optimization by an objective function can produce more than one equally
optimal flux distributions. These solutions are considered – preferably in the light of additional measurements – to determine which most
accurately describes the biology of interest and which may be silent phenotypes. FBA, flux balance analyses; MFA, metabolic flux analysis.
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the tricarboxylic acid (TCA) cycle (Schwender et al. 2006;
Junker et al. 2007) enzymes function in their conventional
roles in heterotrophic tissues to fuel biosysnthesis. MFA
was also able to explain the high carbon use efficiency
during oil synthesis in developing rapeseeds by revealing
that CO2 is recycled through Rubisco without the operation
of the reductive pentose phosphate pathway (Schwender
et al. 2004a).

This latter discovery illustrates the ability of label-
assisted steady-state MFA to reveal new functional aspects
of complex metabolic networks. During fatty acid synthesis
from carbohydrate, a third of the carbon is released as
carbon dioxide [one CO2 for each acetyl-coenzyme A
(CoA) produced by pyruvate dehydrogenase]. In Sch-
wender et al. (2004a), the rate of CO2 evolution by brassica
embryos developing in culture was found to be lower than
expected from the lipid synthesis rates. Furthermore, it was
not possible to quantitatively explain the results of 13C
labelling experiments through the action of known meta-
bolic pathways. Alanine labelled with 13C provided to
embryos resulted in labelling in the first carbon position of
phosphoglycerate (PGA) which was detected in aromatic
amino acids (Fig. 2). This was explained by the successive
actions of alanine aminotransferase and pyruvate dehydro-
genase yielding 13CO2 which is assimilated by Rubisco to
produce labelled PGA.The lack of transfer of this label into
fatty acids in this experiment, or when 13CO2 was provided,
showed that Rubisco was operating outside its usual
context of the reductive pentose phosphate pathway.

Steady-state MFA with other labelled carbon sources sup-
ported this result, was able to account for the labelling
patterns observed and the high carbon use efficiency of
these seeds, and was consistent with the finding that
Rubisco exists in its active form in green oilseeds (Ruuska,
Schwender & Ohlrogge 2004). Analysis of the capabilities
of the network using EMA is another powerful tool for
understanding patterns of flux through complex networks
(Table 1), and in this case showed that the potential for this
hitherto unrecognized role for Rubisco is inherent in the
network structure (Schwender et al 2004a). Recent steady-
state MFA work in soybean also supports a role for Rubisco
in developing green seeds (though less than in brassica),
despite the low levels of light reaching them (Allen et al.
2009).

Up to 45% of fatty acids in Brassica (cv. Reston) seed oil
have very long chains with elongation taking place in the
cytosol (Ohlrogge, Pollard & Stumpf 1978; Whitfield,
Murphy & Hills 1993; Bao, Pollard & Ohlrogge 1998).
Acetyl-CoA is not transferred across membranes (Liedvo-
gel & Stumpf 1982), but it can be provided to the cytosol
through the export of citrate from mitochondria to the
cytosol, and subsequent cleavage by ATP-citrate lyase. To
describe the fluxes involved, experiments utilizing 13C-
labelled substrates were performed and labelling in amino
and organic acids as wells as lipids and carbohydrates were
measured. Initial inspection of the results seemed consis-
tent with the operation of known metabolic processes, but
modelling of the data supported an atypical operation of
the tricarboxylic acid cycle enzymes. In particular, isocitrate
dehydrogenase, believed to be an irreversible step in plant
metabolism, is apparently highly reversible and even carries
net backwards flux, resulting in the carboxylation of oxo-
glutarate. The reversibility of this step was confirmed in
experiments using fully labelled glutamine, which yielded
citrate containing the intact five-carbon skeleton of the sub-
strate. Modelling of labelling data in this steady-state MFA
further revealed that the pattern of net flow through mito-
chondrial enzymes involves a substantial flow through malic
enzyme, and that citrate formed by the acetylation of oxalo-
acetate (citrate synthase) is exported rather than being
isomerized and then oxidized as in the conventional TCA
cycle. The same reversibility of isocitrate dehydrogenase
has since been observed in soybean (Allen et al. 2009),
although in the seeds of this plant, the net flux through
isocitrate dehydrogenase (ICITDH) is decarboxylating and
the TCA cycle operates with a conventional forward flux.

Steady-state MFA can also improve our understanding of
plant metabolism by characterizing the potentially complex
changes in fluxes induced by environmental and develop-
mental changes (Rontein et al. 2002; Alonso et al. 2007b;
Junker et al. 2007; Williams et al. 2008). A recent investiga-
tion of cultured Arabidopsis cells (Williams et al. 2008)
highlights the plasticity of metabolism to perturbations in
oxygen level. Electron transport directly couples TCA cycle
activity with the oxygen consumption of the cell and there-
fore changes in oxygen level drastically influence primary
metabolism (Davies, Grego & Kenworth 1974). In the
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Figure 2. Re-assimilation of carbon and improvement of the
carbon use efficiency in Brassica napus (after Schwender et al.
2004a). The provision of [1-13C]-labelled alanine or 13CO2

resulted in labelling in readout metabolites of PGA and PEP as
was supported through metabolic flux analysis. As the label did
not end up in fatty acids, scrambling that occurs within reversible
pentose phosphate pathways and Calvin Benson cycle activity
was not present, supporting an uncommon operation of Rubisco
in these oilseeds. Ac-CoA, Acetyl-Coenzyme A; ALA, Alanine;
GAP, glyceraldehyde-3-phosphate; P5P, pentose phosphate; PEP,
phosphoenol pyruvate; PGA, 3-phosphoglycerate; PHE/TYR
phenylalanine/Tyrosine; PYR, pyruvate; RPPP, reductive pentose
phosphate pathway (Calvin Benson Bassham pathway); SER,
serine; VAL, Valine.
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Williams et al. study, the balance of respiratory and bio-
synthetic fluxes through primary metabolism was largely
unchanged, though absolute fluxes through the network did
increase with higher oxygenation rates. This work implies
that cellular metabolism was oxygen-limited rather than
carbon-limited.

To date, only a handful of MFA studies have examined
the effect of genotype: Alonso et al. (2007b) explored the
role of sucrose synthase in starch and cell wall production in
root tips of mutant and wild-type maize; Spielbauer et al.
(2006) compared flux patterns in maize kernels of 18
genotypes; and McNeil et al. (2001) used dynamic MFA to
analyse the biosynthesis of glycine betaine in transgenic
tobacco. Applications of MFA to transgenics can be
expected to grow given the frequent finding of unexpected
metabolic changes in genetically altered plants and the
development of plant MFA over recent years (Kruger &
Ratcliffe 2007, 2008). Additional factors making the growth
of MFA in mutant and transgenic plants likely are the
establishment of flux maps for model tissues, advances in
MFA methods generally and for plants in particular, and
the potential to use cell suspensions to compare genetically
different lines (Rontein et al. 2002; Baxter et al. 2007;
Kruger et al. 2007; Williams et al. 2008).

Work towards applying MFA to plants under physiologi-
cally normal conditions has taken several directions in
recent years. For autotrophic cells or tissues, CO2 is the
natural substrate; however, labelling with CO2 to isotopic
steady state results in uniform and uninformative labelling,
thus non-steady-state experiments and analyses are
required. One approach to this challenge is to transiently
label all internal pools with CO2 and perform metabolic
phenotyping of the subsequent label dilution in whole
plants (Huege et al. 2007; Romisch-Margl et al. 2007).
Though attractive from a physiological perspective, the
mixed metabolism across plant tissues makes it unclear if
this approach can lead to flux maps. In other labelling
studies, the temperature (Iyer et al. 2008) or light (Ettenhu-
ber et al. 2005a) was varied diurnally during labelling so as
to make conditions more representative of normal plant
growth than in studies in which constant conditions are
maintained. The resulting end-point labelling patterns
reflect metabolism that was changing dynamically during
the experiment, and this temporal convolution makes the
results of such studies more challenging to evaluate. Alter-
natively, the analysis of labelling over shorter time periods
in dynamic labelling experiments can be performed more
rigorously, and this has been applied to a range of more or
less intact plant tissues to study secondary metabolism (dis-
cussed below). Recent developments at the interface of
steady-state and dynamic MFA (Noh, Wahl & Wiechert
2006; Antoniewicz et al. 2007; Noh et al. 2007; Wahl, Noh
& Wiechert 2008; Zhao et al. 2008) methods in micro-
organisms should increase the range of options for MFA of
plant central metabolism, and are beginning to break down
the conceptual divisions between dynamic and steady-state
MFA approaches. In a recent study, Shastri & Morgan
(2007) analysed transient labelling with CO2 to develop

dynamic flux analysis methods for unicellular microalgae at
metabolic but not isotopic steady state.

Dynamic MFA studies are based on time course mea-
surements of the concentrations and/or labelling levels of
metabolic intermediates, and the kinetic properties of
enzymes and transporters in the network (usually measured
in vitro). Dynamic MFA has been successfully applied to
study plant metabolism (reviewed in Morgan & Rhodes
2002; Poolman et al. 2004; Ratcliffe & Shachar-Hill 2006;
Rios-Estepa & Lange 2007; Libourel & Shachar-Hill 2008).
The availability of dynamic modelling software and analyti-
cal spectroscopies for measuring metabolite levels and
stable isotopic labelling have, together, expanded the size of
networks that can be studied by dynamic MFA, although
steady-state MFA or FBA are still more often used for
analysing larger central metabolic sub-networks. In plants,
dynamic MFA methods have been more extensively
applied to the study of photosynthesis (e.g. Zhu, de Sturler
& Long 2007) and secondary metabolism (e.g. Rios-Estepa
et al. 2008), and can result in intriguing predictions about
potential metabolic engineering opportunities for improved
plant performance (Rohwer & Botha 2001; Uys et al. 2007).
For example, Uys and co-workers examined the accumula-
tion of sucrose in maturing sugarcane stem. Using kinetic
modelling and MCA, these authors were able to establish
the reactions with the greatest control over futile cycles
associated with sucrose accumulation in the vacuole.

This use of kinetic modelling with MCA provides a
means for predicting the impact of changes to specific
enzymes, but dynamic modelling in this way does not have
to include knowledge of kinetic parameters. Indeed, power
law descriptions of biochemical processes have resulted in a
comprehensive mathematical framework known as Bio-
chemical Systems Theory (Savageau 1998 and references
therein). Heinzle et al. (2007) modelled the metabolism of
phenylpropanoid metabolism, using data on potato discs
labelled with phenylalanine (Matsuda et al. 2003, 2005)
using a power-law kinetics representation. They were able
to establish pathway fluxes and control coefficients that
provide rationale for the self-protection of plants by com-
parative flux control analysis between the control and cells
that received an elicitor (Fig. 3).

A recent study of monoterpenoid metabolism in pepper-
mint illustrates how metabolic regulatory features can be
discovered through the modelling of kinetic metabolite
data with dynamic MFA (Rios-Estepa et al. 2008). Monot-
erpenoid metabolism is responsible for the biosynthesis
of a range of plant secondary compounds and has been
the target of substantial metabolic engineering efforts
(Mahmoud & Croteau 2002). Rios-Estepa and co-workers
developed a kinetic model of the metabolic sub-network
using measurements of the levels of intermediates and
products, estimating their concentrations in the secretory
cells from microscopic analysis and using previous knowl-
edge about the levels and kinetics of the enzymes involved.
This kinetic model was used to analyse the effects of
environmental stress (low light) on the accumulation of
products and intermediates, which pointed to a hitherto
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unknown inhibitory effect of an intermediate (menthofu-
ran) on a key branch point enzyme (pulegone reductase).
This model-derived result was verified by in vitro assays on
the enzyme.This and other studies serve to demonstrate the
power of dynamic MFA to identify novel regulatory pro-
cesses as part of plant metabolic engineering.

SUBCELLULAR COMPARTMENTATION

Subcellular compartmentation increases metabolic flexibil-
ity, specialization and regulation. It also presents challenges

to metabolic analyses, with MFA being no exception. For
MFA, compartmentation complicates the structure of the
metabolic network, the localization and measurement of
metabolite levels and the determination of metabolite
labelling, which may differ for the same metabolite in
different compartments (Fig. 4). In plants, the presence of
large vacuoles and metabolically active plastids creates
additional challenges compared with animal or some fungal
systems. Failure to account properly for compartmentation
can potentially lead to differing flux maps, models and con-
clusions, as was shown recently for the case of futile cycling
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Figure 4. C3 and C4 carboxylic acid
interconversions in plant central metabolism. The
existence of multiple pools for each metabolite and
poorly understood intercompartmental transport
rates make flux analysis of this part of metabolism
challenging. Frequently the C3 and C4 products are
combined in flux analyses into a smaller number of
pools as is shown by the three clusters in the yellow
areas, to minimize the problems associated with flux
identifiability in modelling. OAA, oxaloacetate;
PEP, phosphoenol pyruvate; PYR, pyruvate.
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associated with sucrose and glucose turnover by (Kruger,
Le Lay & Ratcliffe 2007b). However, if compartmentation
can be resolved, MFA studies have the potential to deter-
mine the relative contributions of different compartments
to metabolic fluxes. Comparing the fluxes through parallel
routes in the cytosol and plastid (like those connecting
hexose- and triose-phosphates), is extremely difficult to do
reliably by most approaches. MFA also has the potential to
reveal the existence of multiple pools of the same metabo-
lite as, for example, for choline in leaves (McNeil et al.
2001).

The structure of a metabolic network depends on the
location of its enzymes and transporters, and the location
of these proteins can be determined with varying degrees
of confidence by microscopic immuno-histochemistry and
fluorescence tagging, by organelle fractionation and pro-
teomics, and by targeting predictions based on sequence.
Incomplete, inaccurate and uncertain information on
network structure is unfortunately the norm in plant
metabolism, and care should be taken to check key
assumptions. Such testing can be computational – to see
whether models based on different network structures can
account equally well for observed data – and ideally also
experimental, by seeking evidence on the location of
important proteins. Metabolite concentrations are used in
dynamic MFA, and determining them usually depends on
dividing the total levels determined after extraction by
the volume they occupy – requiring knowledge of their
compartmentation. Metabolite labelling measurements are
used in both dynamic and steady-state MFA, and these
can be different for the same metabolite in different
compartments.

Organelle purification methods

The need for compartmental information on proteins and
metabolites can be partially met using organelle purifica-
tion methods (Winter, Robinson & Heldt 1993; Weise,
Weber & Sharkey 2004; Farre, Fernie & Willmitzer 2008). In
non-aqueous fractionation, tissues are frozen quickly and
lyophilized under conditions where the levels and localiza-
tion of metabolites are as little perturbed as possible (Stitt
et al. 1989). Because the separation of organelles is incom-
plete, estimates of compartmentalized metabolite levels by
this approach rely on deconvolution techniques using
known protein markers for different compartments (Riens
et al. 1991). It is not clear how successful such a deconvolu-
tion strategy would be for determining unknown labelling
differences between compartments, though only small
amounts of pure organelle fractions would be necessary
for label determination using sensitive mass spectrometric
methods. Aqueous fractionation methods (Keech, Dizen-
gremel & Gardestrom 2005) involving separation by
density-gradient centrifugation results in a better separa-
tion of organelle fractions, and this is important for protein
localization efforts, but is unlikely to preserve the location
of metabolites other than less mobile end products.

Compartment-specific readout metabolites

An alternative strategy for resolving metabolite labelling in
different compartments involves the use of reporter or
read-out metabolites that are specific to subcellular loca-
tions. For example, acetyl-CoA is an important metabolic
intermediate that plays different roles in several compart-
ments and is not transported across membranes (Weaire &
Kekwick 1975; Roughan, Holland & Slack 1979). As a pre-
cursor for lipid synthesis, acetyl-CoA for de novo fatty acid
synthesis is produced by plastidic pyruvate dehydrogenase
(Bao et al. 2000), while acetyl-CoA for fatty acid elongation
is generated in the cytosol (Ohlrogge et al. 1978; Whitfield
et al. 1993; Bao et al. 1998). Labelling in these pools can be
determined by analysing fatty acids that are made in the
plastid and elongated in the cytosol (Schwender & Ohl-
rogge 2002;Allen, Shachar-Hill & Ohlrogge 2007).Thus, the
labelling measured in 16 and 18 carbon fatty acids repre-
sents the labelling of plastidic acetyl-CoA, whereas label-
ling in the terminal carbons of 20 carbon or longer fatty
acids represents the labelling of cytosolic acetyl-CoA.

Distinct readout metabolites can also be used to distin-
guish the labelling of key sugar phosphate pools located in
the plastid and cytosol. Labelling in starch represents the
isotopic state of its precursors in the plastid and sucrose,
protein glycans and cell walls are imprinted with the label-
ling patterns of the cytosolic carbohydrates from which they
are made. Although labelling in sucrose can be measured
directly, enzymatic or chemical breakdown is used to facili-
tate the analysis of polymer-associated carbohydrates.Thus,
for example, acid hydrolysis of starch and protein glycans
yields levulinic acid, where enzymatic hydrolysis yields
glucose whose labelling can be analysed by NMR (Sriram
et al. 2007b).A distinct benefit of this approach is the ability
to examine positional enrichments and long range coupling
between carbons that provides valuable information for
flux analysis (Sriram et al. 2007b). Labelling in monomers of
cell walls, starch and protein glycans can also be analysed
using gas chromatography-mass spectrometry (GCMS)
with or without prior reduction of the sugars to their alditol
derivatives (Allen et al. 2007). Several studies have
reported the resolution of fluxes between cytosol and
plastid based on readout metabolites (e.g. Sriram et al. 2004;
Alonso et al. 2007a), although in other studies it was con-
cluded that there was insufficient distinguishing informa-
tion to resolve these with any confidence (e.g. Schwender
et al. 2003; Allen et al. 2009).

Non-destructive methods for
metabolite analysis

In vivo NMR spectroscopy and imaging are non-destructive
methods that can provide information on the levels and
labelling of detected metabolites (Ratcliffe & Shachar-Hill
2001; Kockenberger et al. 2004). Although NMR is limited
by sensitivity to reporting on the more abundant metabo-
lites, in favourable cases, it can also contribute to analysing
the distribution of those metabolites among subcellular
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compartments, usually between the vacuole and the rest of
the cell.A compound that is located in multiple intracellular
environments may give distinct signals depending on
whether the signal is sensitive to any differences in pH,
viscosity or ionic composition between those compartments
(Vogel, Lundberg & Bagh 1999; Ratcliffe, Roscher &
Shachar-Hill 2001). The pH dependence of NMR signals is
commonly exploited for phosphorylated compounds and
organic acids (Stidham, Moreland & Siedow 1983; Gout
et al. 1993), and compartmental information has also been
obtained on amino acids (Aubert et al. 1998, 1999) and
ammonium (Lee & Ratcliffe 1991). In vivo NMR spectros-
copy has also been used to measure steady-state fluxes
directly by magnetization transfer; this has been very infor-
mative about the turnover of phosphorylated compounds
in heterotrophic plant tissues (reviewed in Ratcliffe &
Shachar-Hill 2001). In vivo NMR can also be used to obtain
high-quality time course measurements of labelling e.g.
(Troufflard et al. 2007) which directly reflect fluxes.

Fluorescent protein reporters with fluorescence micros-
copy provide an additional non-destructive in vivo method
(Lalonde, Ehrhardt & Frommer 2005; Okumoto, Takanaga
& Frommer 2008) to measure metabolite levels in different
compartments. Sensitive reporters have been developed for
a number of metabolites (mainly sugars and amino acids),
and they can be selectively targeted to several different
intracellular compartments. These reporters should con-
tribute to dynamic MFA by providing measurements of
subcellular metabolite concentrations and their changes in
response to perturbations (Okumoto et al. 2008).

METABOLIC BRANCH POINTS

The presence of branch points in a network creates multiple
options for fluxes between different intermediates and this
presents one of the largest challenges for MFA. In central
metabolism, such branch points are the rule rather than the
exception (Figs 2–4), making this one of the most challeng-
ing areas to study. Because of their structural significance,
enzymes at such branch points are frequently important in
regulation and have been the target of metabolic engineer-
ing as well as flux analyses that often represent sets of linear
steps as combined single processes.

Pentose phosphate pathway

A longstanding challenge for MFA is the branch point at
glucose-6-phosphate between the pentose phosphate path-
ways and glycolysis (Kruger & von Schaewen 2003). The
pentose phosphate pathways are important to redox status,
and to providing substrates for the synthesis of ribonucle-
otides, histidine and aromatic amino acids and shikimic acid
products. For plants, the latter can represent large and vari-
able fluxes because of the production of lignins and fla-
vonoids. The availability of glucose labelled in different
positions has been important for resolving fluxes at this
branch point, first with the use of [1-13C]-glucose and
[6-13C]-glucose (Willis, Williams & Schleich 1986; Kingsley-

Hickman, Ross & Krick 1990), and later [2-13C]- and [1,2-
13C2]-glucose (Lee et al. 1998), which provide greater
sensitivity for resolving the split of fluxes (Schwender,
Ohlrogge & Shachar-Hill 2004b; Libourel, Gehan &
Shachar-Hill 2007). However, fluxes through other branch
points and reversible fluxes can obscure the labelling
imprint of the glycolysis oxidative pentose phosphate
pathway (OPPP) split. Additionally, ketolase and aldolase
enzymes can act on multiple substrates, complicating label
interpretation (Flanigan et al. 1993; Williams & MacLeod
2006). Thus, even in thorough investigations of simpler
systems, uncertainty (confidence ranges) about the split
ratio can be large (Dauner, Bailey & Sauer 2001; van
Winden et al. 2005). For example, studies of the same
microbe by different well-known MFA groups have
reported ranges from 33 to 75% for the glycolysis/OPPP
split ratio (Christensen & Nielsen 2000; Christensen,
Thykaer & Nielsen 2000; van Gulik et al. 2000; van Winden
et al. 2003; Kleijn et al. 2006), although genetic and growth
conditions are likely to have contributed to this.

This analysis is further complicated in plants by the
duplication of PPP and glycolytic enzymes in both cytosol
and plastid (Nishimura & Beevers 1979; Schnarrenberger,
Flechner & Martin 1995; Kruger & von Schaewen 2003;
Caillau & Quick 2005), with fluxes between compartments
via hexose, pentose or triose transporters (Eicks et al.
2002; Weber 2004). The presence of both oxidative
and reductive PPP (the Calvin Benson Bassham cycle)
enzymes in plastids – whose activities can result in label-
ling patterns that are hard to distinguish – is another issue
that complicates MFA of green tissues. It turns out that in
plant metabolism, the simultaneous operation of oxidative
and reductive pentose phosphate pathways is strongly
inhibited at multiple levels of regulation (Buchanan 1980;
Buchanan & Luan 2005). However, light-dark changes and
cellular heterogeneity in a tissue require the issue to be
borne in mind, especially for photoheterotrophic tissues.
Distinguishing between oxidative and reductive penstose
phosphate pathway fluxes is aided in the context of
MFA by measurements of net CO2 evolution (Allen et al.
2009).

Three and four carbon carboxylic
acid interconversions

The fluxes connecting PEP, pyruvate, oxaloacetate (OAA)
and malate also present substantial challenges to metabolic
engineering and flux analysis in plants (Fig. 4). Here again,
compartmentation and duplication of enzymatic steps, mul-
tiple branch points and alternative routes that result in the
same labelling patterns in the analytes, all contribute to the
difficulty in resolving fluxes in this part of metabolism. Rela-
tively few examples of compartmentalized flux analysis for
this part of metabolism exist and those have been based
upon labelling in amino acids that are known to be com-
partmentally distinct in other systems such as yeast
(Gombert et al. 2001), but not necessarily in plants. Never-
theless, these reactions are crucial to anaplerosis, amino
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acid metabolism and the direction of carbon into biosyn-
thesis and catabolism, they also influence the energy and
redox balances of the cell. Manipulation of anaplerotic
fluxes has resulted in increased production of amino acids
in microbes such as Corynebacterium glutamicum (Peters-
Wendisch et al. 1998; Petersen et al. 2001) and in Vicia,
the overexpression of phosphoenolpyruvate carboxylase
(PEPC) resulted in increased partitioning of carbon to
protein (Rolletschek et al. 2004; Radchuk et al. 2007). FBA
(Table 1) has recently been used to show that where amino
acid uptake is significant, an anaplerotic flux for protein
biosynthesis is not required (Schwender 2008). Plant MFA
studies have not been able to resolve all the fluxes through
these branch points, but progress has been made using a
combination of: analysing amino acid labelling as readout
metabolites, measuring labelling in organic acids directly,
making simplifying assumptions about the equilibration of
labelling between different pools of four-carbon dicarboxy-
lates and using multiple labelled substrates. Thus, plant
MFA studies have been able to estimate, for example, fluxes
into and out of the TCA cycle and fluxes that convert C3 to
C4 carboxylic acids by CO2 fixation and to analyse the
contribution of malate decarboxylation reactions to mito-
chondrial pyruvate supply (Schwender et al. 2006) and plas-
tidic fatty acid synthesis (Alonso et al. 2007a).

MFA-based conclusions about the type, quantitative con-
tribution and location of fluxes through PPP and among the
3C and 4C organic acids should be received with attention
to the rigor with which they were obtained.The reliability of
such findings depends on the complexity of and depth of
prior knowledge about the structure of the network under
study, the number and quality of labelling and input/output
measurements, the sensitivity of the substrates used
(discussed in the following section), the care with which
confidence intervals were evaluated, and the degree of
independent testing to which the model and its results were
subjected. Indeed, although methods and standards for
plant MFA are still being refined, these criteria should be
borne in mind when evaluating all MFA studies. We next
consider ongoing technical developments in MFA that
can improve the reliability and predictive ability of plant
analyses.

Pathway-tailored isotope label design

The ability to distinguish between parallel pathways located
in different organelles largely depends on the availability of
compartment-specific readout metabolites. The precision
with which fluxes can be estimated depends heavily on the
sensitivity of label measurements to fluxes. Because of the
many scrambling reactions in most metabolic networks,
positional labelling of downstream metabolites tends to
approach the average label content. This implies that the
dynamic range for labelling intensities is reduced, which
lowers the measurement sensitivity. Therefore, the proxim-
ity of measured metabolites to the fluxes of interest is
important in determining precision. A distant relationship

between label measurements and fluxes compounds uncer-
tainties and in practice exchange fluxes relatively close to
measurements are the only ones that can be well resolved.
It follows that the quality of flux estimates is best if labelled
substrates that enter metabolism at multiple points are
used, and label measurements are made from all parts of
the network.

Whether all fluxes in a pathway can be resolved in prin-
ciple for a given set of measurements, is determined using
structural identifiability analysis (van Winden et al. 2001;
Isermann & Wiechert 2003; Chang, Suthers & Maranas
2008). Usually, multiple label measurements from multiple
label experiments are necessary for each degree of freedom
as single labelling experiments are unlikely to uniquely
establish fluxes (Suthers et al. 2007). Once it has been estab-
lished that the set of available measurements is sufficient to
identify the entire flux map or a pathway of interest, the
sensitivity of the label measurements for the flux estimates
can be optimized by the choice of substrate label composi-
tion. Because the precision of a flux map is a quality of the
whole system, an objective function must be formulated
to represent overall precision. An optimal experimental
design of substrate label is therefore in essence an optimi-
zation (fitting) problem that minimizes a chosen optimiza-
tion criterion.

To accomplish this goal, the expected label measure-
ments from using different mixtures of available labelled
substrates and the sensitivity of the measurements to the
fluxes are calculated. This sensitivity information is con-
tained in the flux covariance matrix, and an optimal label
design is chosen based on a quality of the covariance matrix
expressed as a criterion. Optimal experimental design
theory is well advanced and has described many such crite-
ria, all suitable for specific aims (Pazman 1986; Pukelsheim
1993). Libourel et al. (2007) have shown that optimizing the
choice of how much of each of the available and physiologi-
cally relevant labelled substrates to use in a steady-state
MFA experiment can greatly increase the precision of flux
measurements both for the network as a whole and for
particular fluxes of interest.

The sensitivity of measurements for fluxes is not linear,
which makes the optimal substrate mixture dependent on
the actual flux values. As a consequence, the establishment
of precise flux maps is an iterative process. Rough initial
flux estimates can be used to design a labelled substrate
mixture that is subsequently used for more precise flux
measurements. Because the choice of labelled substrates
yields a different distribution of sensitivities across the
network, multiple labelling experiments can help improve
the precision of flux estimates. This method can be espe-
cially helpful if parallel pathways need to be resolved
without compartment-specific readout metabolites. Two or
three label experiments have therefore been used in some
studies to improve the quality of flux maps in plants
(McNeil et al. 2000b; Schwender et al. 2004a, 2006; Alonso
et al. 2007a; Allen et al. 2009). However, criterion-based
optimal design for multiple experiments (Libourel et al.
2007) has yet to be applied.
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HARNESSING INSIGHT FROM COMPLEX
FLUX MODELS

A flux map is an emergent property of the underlying
physical components: the enzymes, transporters and
metabolites. A steady-state labelling-based metabolic flux
map, however, is established without any knowledge of
these underlying components beyond the network stoichi-
ometry and yields a description of the fluxes without
mechanistic detail. This means that such maps do not
predict how metabolism will adapt to a change in the under-
lying components, such as a change in an enzyme activity.
This inherited limitation of a descriptive model makes
it non-trivial to use flux maps for hypothesis testing or
in silico evaluation of metabolic mutants and transgenics.
Hypothesis testing is important for the evaluation of our
fundamental understanding of metabolism, and in silico
evaluation of metabolic mutants will be key to rational
engineering of transgenic plants (Libourel & Shachar-Hill
2008). Although detailed dynamic/kinetic models are inher-
ently predictive, there have been important recent develop-
ments towards making steady-state MFA predictive.

Minimization of metabolic adjustment (MOMA)
and regulatory on/off minimization (ROOM)

Two methods have been developed that aim to predict flux
adaptation in response to a given change in a particular flux,
such as in a knockout mutation. The first approach is based
on MOMA. This is accomplished through minimization of
the sum of the squared differences between the original and
adjusted flux map. MOMA predictions are often in good
agreement with experimental results, and its easy applica-
bility makes MOMA an attractive tool for metabolic engi-
neering (Segre, Vitkup & Church 2002). A description of
MOMA is provided in Fig. 5. The second method, ROOM,
is based on the minimization of the number of flux changes
(Shlomi, Berkman & Ruppin 2005). The concept behind
ROOM is based on the observation that gene expression
dramatically alters immediately after a metabolic perturba-
tion, but gradually returns to a state, close to the one before
the perturbation. ROOM predictions are also in good
agreement with experimental data for bacteria, and ROOM
predictions outperform MOMA predictions in experiments
where an adaptation period was included. In contrast to
MOMA, ROOM usually finds multiple equivalent solu-
tions, which makes the practical application of ROOM for
metabolic engineering less straightforward, especially for
the more complex networks of plant metabolism. ROOM,
which is based on a biological observation, does provide
insight into how metabolic networks are regulated.

FBA

FBA (see Table 1 and Introduction) is a largely theoretical
alternative approach to deducing metabolic flux values
within a network. FBA flux values are determined on
the basis of reaction stoichiometries, measurements of

substrate and biomass fluxes and inferred selective pres-
sures (optimization of an objective function). By including
the assumption that selective pressure has optimized meta-
bolic efficiency, FBA is focused on the functionality of a
metabolic network. Conversely, this approach makes it pos-
sible in principle, not only to infer internal metabolic fluxes,
but also – when the flux map is known from experimental
MFA – to investigate the selective pressures that shaped
metabolism. FBA- and labelling-based flux maps can be
compared for this purpose, and for Brassica napus, interest-
ing differences between FBA and labelling-based flux maps
were recently discussed (Schwender 2008).

FBA flux maps for wild type and mutant are established
in the same way, with the implicit assumption that the
network still operates to maximize the objective function
after a perturbation. This suggests that either adaptive evo-
lution occurs or redundancies exist in networks. Indeed,
experimental flux values of mutant bacteria matched the
FBA prediction better after an adaptive growth period and
flux values of strains that had very recently been perturbed
tended to more closely reflect the sub-optimal MOMA

Figure 5. Example network with one internal metabolite,
two substrates and one product (biomass). (a) Graphical
representation of the flux space of network a (b). The light grey
area shows the range of values that V1 and V2 may assume, the
dark grey area limits the value for V3. Line a represents the
equivalent FBA solution space given the objective function to
maximize V3, and a V3max of 7. Line b represents the
stoichiometrically feasible solution space following a knockout
mutation in V2. Point 1 represents an example wild-type flux map
and points 2 and 3 the mutant prediction using minimization of
metabolic adjustment (MOMA) and flux balance analysis (FBA),
respectively. Because V1� has now become limiting, selective
pressure may eventually yield a flux map close to point 4. Note
that the MOMA prediction for V1� falls right between the
original values V1 and V3 (vertical dashed lines).

Metabolic flux analysis in plants 1251

© 2009 Blackwell Publishing Ltd, Plant, Cell and Environment, 32, 1241–1257



prediction (Shlomi et al. 2005). Because FBA requires no
label measurements to predict flux values, it can handle very
large networks. In fact, genome-wide networks are becom-
ing almost routine for FBA studies of prokaryotes (Reed &
Palsson 2003; Feist et al. 2007).With the growing availability
of completed plant genomes and the steady improvement
of orthologue-based annotation, many more FBA flux maps
including of plant systems can be expected in the future.
Indeed, FBA was recently used to analyse metabolism in
barley seeds (Grafahrend-Belau et al. 2009) and Chlamy-
domonas (Boyle & Morgan 2009). However, the incomplete
annotation of plant genomes and imperfect compartmental
targeting predictions still present considerable challenges
to reconstructing metabolic networks from plant genomes
(reviewed in Sweetlove et al. 2008).

Developments in predictive modelling

There are two significant limitations of the FBA method.
First, it requires knowledge of the objective function, which
for microbes is usually maximal growth rate, but is often
unclear for plant tissues. This issue can be tackled by com-
paring different objective functions, although this has yet to
be demonstrated in a plant system (Burgard & Maranas
2003). Secondly, the predicted flux maps obtained from
FBA are typically not unique, but instead form a solution
space (Fig. 1). Equivalent flux solutions have been com-
pared with silent mutations, where change in gene expres-
sion does not affect the functionality of the organism (Reed
& Palsson 2004). Although this property takes little away
from the ability to aid network functionality, it does hamper
the applicability of FBA for biotechnological purposes,
where the outcome of a genetic intervention must be
unequivocal to be useful.

FBA is also referred to as constraint-based flux analysis
and it is the lack of sufficient constraints on a metabolic
network that is the cause of the existence of a solution space
instead of a singular flux solution. Identifying additional
constraints to shrink the solution space remains a focus of
FBA development (Bonarius, Schmid & Tramper 1997;
Covert, Famili & Palsson 2003; Price, Reed & Palsson 2004).
Current FBA flux models are augmented with metabolic
and physiological information from the literature – bib-
liome (Duarte et al. 2007) – as well as with gene and protein
expression and localization data derived from network
reconstructions (Schilling, Edwards & Palsson 1999; Feist
et al. 2009). Current FBA models also include regulatory
information to restrict the actual flux map for a given tissue
and/or condition (Covert & Palsson 2002).

A different line of attack was taken by groups that sought
to include the intrinsic biophysical constraints that operate
on metabolism. Work of this kind uses the functional group
contributions of metabolites (Mavrovouniotis 1990, 1991;
Jankowski et al. 2008), in combination with estimates
for cellular pH and ionic strength to calculate their Gibbs
free energy (Maskow & von Stockar 2005). With this
information, the directionality of reactions can be esti-
mated [Energy Balance Analysis (EBA); Beard, Liang &

Qian 2002; Qian, Beard & Liang 2003; Beard et al. 2004]
and thermodynamically feasible metabolite concentra-
tion ranges can be established. Likewise, the method
thermodynamic-based FBA (TMFA) uses group contribu-
tions to trim the number of likely metabolic routes from
substrate to product (Henry, Broadbelt & Hatzimanikatis
2007), although other algorithms directly include meta-
bolite concentration ranges as part of the optimization
criterion (Hoppe, Hoffmann & Holzhutter 2007). The rela-
tionship between free energy changes and flux reversibility
was the topic of two recent theoretical studies.These studies
addressed how enzyme mechanisms affect exchange fluxes
as determined by labelling-based MFA (Beard et al. 2004;
Wiechert 2007). The same relationship can be used to
extend thermodynamic constraints to MOMA predictions
(Libourel et al., unpublished results).

CONCLUSIONS

Plants are indispensable sources of food, feed and fibre
production and offer potentially invaluable resources for
making renewable feedstocks and fuels. Manipulating plant
metabolism to better serve these and future needs requires
an improved understanding of the links between genotype
and phenotype. Fluxes through metabolism directly report
on cellular physiology at the network level and their analysis
has received increasing attention in recent years.A range of
different MFA methods has been applied to plant systems,
yielding unique insights into the operation of plant meta-
bolic networks. Importantly, MFA allows emergent proper-
ties of the network (e.g. overall efficiency) to be analysed,
and offers the prospect of better linking functional pheno-
types with genotype than has been possible to date.

The MFA toolset continues to grow, with developments
in the microbial metabolic engineering community pointing
the way towards predictive flux modelling and whole-
genome network analyses. Importing both existing and
emerging MFA methods for plant studies faces consider-
able hurdles because of the greater complexity of plant
metabolic networks and our ignorance of them at the gene,
protein and subcellular compartment levels. Structural and
functional genomic investigations will continue to unveil
the metabolic capability of plants, but the ability to estimate
fluxes confidently and accurately will require measure-
ments that are compartment-specific.As experimental tech-
niques are enhanced to better discern compartmentalized
behaviours, the resulting metabolic model can be expected
to be more accurate and serve to better aid rational meta-
bolic engineering efforts in plant and other complex
systems.
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