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Progressive TIN densification (PTD) is one of the classic methods for filtering airborne LiDAR point clouds.
However, it may fail to preserve ground measurements in areas with steep terrain. A method is proposed
to improve the PTD using a point cloud segmentation method, namely segmentation using smoothness
constraint (SUSC). The classic PTD has two core steps. The first is selecting seed points and constructing
the initial TIN. The second is an iterative densification of the TIN. Our main improvement is embedding
the SUSC between these two steps. Specifically, after selecting the lowest points in each grid cell as initial
ground seed points, SUSC is employed to expand the set of ground seed points as many as possible, as this
can identify more ground seed points for the subsequent densification of the TIN-based terrain model.
Seven datasets of ISPRS Working Group III/3 are utilized to test our proposed algorithm and the classic
PTD. Experimental results suggest that, compared with the PTD, the proposed method is capable of pre-
serving discontinuities of landscapes and reducing the omission errors and total errors by approximately
10% and 6% respectively, which would significantly decrease the cost of the manual operation required
for correcting the result in post-processing.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

During the last decade, airborne LiDAR (Light Detection And
Ranging), also termed as airborne laser scanning (ALS), has be-
come increasingly popular for various environmental applications,
ranging from the reconstruction of digital terrain models (DTMs;
Axelsson, 2000), 3D building models (Maas and Vosselman, 1999)
and 3D roads (Oude Elberink and Vosselman, 2009) to the detec-
tion of individual tree crowns (Koch et al., 2006), measurement of
tree height and estimation of other forest stand parameters
(Hyyppä et al., 2001). Compared with Interferometric Synthetic
Aperture Radar (InSAR) and photogrammetry, ALS has the advan-
tage of recording dense, discrete, detailed and accurate 3D point
coverage over both the objects and ground surfaces directly (Shen
et al., 2012). Nevertheless, although most of the technical hard-
ware difficulties and system integration problems have been
solved, the development of algorithms and methods for interpret-
ing and modeling of LiDAR data is still urgently needed. Similarly
to aerial or satellite optical imagery, extensive post-processing is
still required to extract accurate terrain or semantic information
from the LiDAR point cloud (Zhang, 2010). One of the post-pro-
cessing methods needed is filtering. In nearly all LiDAR applica-
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tions, ground filtering is a necessary step to determine which
LiDAR returns are from the ground surface and which are from
non-ground surface features (Meng et al., 2010). Consequently,
various kinds of filtering methods have been proposed for auto-
matically extracting the ground points from the ALS point clouds.
There are different classification systems of the existing filtering
methods. According to directional scanning (Meng et al., 2010),
current methods can be grouped into two major categories:
neighborhood-based approaches and directional filtering (Meng
et al., 2009). According to the definition of the ground, Shan
and Sampath (2005) separated existing filtering methods into
two classes, including labeling and adjustment approaches.
According to the filter concept, Sithole and Vosselman (2004) sep-
arated existing filtering methods into four classes, i.e., slope-
based, block-minimum, surface-based, and clustering/segmenta-
tion algorithms. The last group is adopted in this paper. An exper-
imental comparison of the performance of eight filtering
algorithms was presented by Sithole and Vosselman (2004). They
came to the conclusion that the surface-based filters often yield
better results concerning the filter strategy, because they use
more context than other filter strategies. The basic idea of sur-
face-based methods is to create a parametric surface with a cor-
responding buffer zone above it, the surface locates the buffer
zone, and as before the buffer zone defines a region in 3D space
where ground points are expected to reside (Sithole and
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Vosselman, 2004). Thus, the core step of this kind of methods is
to create a surface approximating the bare earth (Chen et al.,
2007). Depending on the means of creating the surface, surface-
based filtering methods can be further divided into the following
three subcategories:

(1) Morphology-based filters. This group of filters originates from
mathematical morphology (Soille, 2003). The idea of mor-
phological methods is approximating the terrain surface
using morphological operations such as opening or geodesic
reconstruction. Kilian et al. (1996) used multiple structure
elements (windows) in the morphological opening to
remove the objects with different sizes. Zhang et al. (2003)
described a similar method using different window sizes
and considered height differences within each window,
which also provides a method for choosing these parame-
ters. However, their method requires the assumption that
the terrain slope is constant. Chen et al. (2007) further
improved a morphological filter without the constant slope
restriction. Arefi and Hahn (2005) presented a geodesic mor-
phological reconstruction-based algorithm to produce the
bare ground. The biggest challenge for these methods is
how to keep the terrain features unchanged when the win-
dow sizes are changed.

(2) Iterative-interpolation-based filters. The second group of algo-
rithms is based on a surface model through the entire point
set that iteratively approaches the ground surface. A first
and rough surface model is used to calculate residuals from
this surface model to the points. If the measured points lie
above it, they have less influence on the shape of the surface
in the next iteration, and vice versa. Kraus and Pfeifer (1998)
used weighted linear least squares interpolation to itera-
tively approximate the ground surfaces. The basic idea of
this method is that ground points usually have negative
residuals and objects points have positive ones, thus a
weight function was designed to assign high weights to
the points with negative residuals and low weights to the
points with positive residuals. Pfeifer et al. (2001) embedded
this method in a hierarchical approach to handle large build-
ings and decrease computation costs. Chen et al. (2012) also
presented a hierarchical recovery method for filtering. The
biggest challenge for these methods is how to increase the
efficiency when the accuracy is fixed.

(3) Progressive-densification-based filters. Similarly to iterative-
interpolation-based filters, this third group of filters works
also progressively, where more and more points are classi-
fied as ground points. However, the difference between
them is that there is no need for interpolation for the later
group. Axelsson (2000) first divides the whole point dataset
into tiles, and selects the lowest points in each tile as the ini-
tial ground points, and then a triangular irregular network
(TIN) of those ground points is constructed as the reference
surface. For each triangle, one of the still unclassified points
being inside is added to the set of ground points if both of
the following two criteria are met: the point’s distance to
the TIN facet and the angle between the TIN facet and the
line connecting the point with the facet’s closest vertex
(see Fig. 2b) must not exceed given thresholds. Before
continuing the next iteration, all ground points classified in
the current iteration step are added to the TIN. In this way,
the triangulation is progressively densified until all points
are classified as either ground or object. Axelsson’s method
is known as progressive TIN densification (PTD) (Sithole
and Vosselman, 2004), adaptive TIN models (Axelsson,
2000), or TIN densification (Zhang et al., 2003). PTD is
adopted herein.
Among the surface-based filtering methods, PTD is widely em-
ployed by both the scientific community and engineering applica-
tions, because it has been integrated into the commercial software
TerraSolid. However, discontinuities in the bare earth also pose
great challenges to the surface-based filters. Theoretically, a ridge
or hilltop that is locally higher than other portions of the ground
surface may resemble an above-ground object and is difficult to re-
tain, as it is regarded as an artificial object (Shao and Chen, 2008).
Fig. 1 shows the PTD filter fails to detect the grounds points around
the break lines and steep terrain, which increases the omission er-
rors and cause gaps in the natural terrain. Further experience with
manual filtering suggests that it is far harder to fix the omission er-
rors (the percentage of bare earth returns misclassified as object
returns) than the commission errors (the percentage of object re-
turns misclassified as bare earth returns) in filtering (Sithole and
Vosselman, 2004). This raises the question whether the filtering
algorithms can be tuned better to reduce the omission errors, even
if this is at the expense of an increased number of commission
errors.

The objective of this paper is to propose an improved surface-
based filtering method that is capable of removing non-ground ob-
jects and preserving terrain features even in steep landscapes and
mixed landscapes of urban and forested areas. The method is
developed based on the fact that, to a large extent, the terrain
can be described by smooth surfaces (Vosselman, 2009), and the
existing point cloud segmentation algorithm segmentation using
smoothness constraint (SUSC; Rabbani et al., 2006) is capable of
recognizing smooth surfaces in a ALS point cloud. SUSC is capable
of partitioning the input point cloud into mutually disjoint,
smoothly connected regions; and it uses a criterion based on a
combination of surface normal similarity and spatial connectivity,
which is called smoothness constraint. Moreover, SUSC only needs
a few input parameters which can be adjusted to get a desired
trade-off between under- and over-segmentation. Thus, we will
embed the above point cloud segmentation method into the classic
PTD filter, which will promote the classic filter’s robustness to var-
ious types of complex landscapes. The main contribution of this pa-
per is that point cloud segmentation is employed to detect more
ground measurements on smooth terrains as seed points, which
is helpful to greatly decrease the omission errors in filtering. To
evaluate its performance, this method is compared with classic
PTD using the benchmark data provided by ISPRS Commission III/
WG 3 (Sithole and Vosselman, 2004), which includes seven sites
ranging from urban to rural areas with different complexity.
2. Methods

We improve the PTD filter using the SUSC. Details of both
underlying algorithms and our proposed method are described as
follows.

2.1. Classic PTD method

Despite many filters having been proposed, most of the details
of the filtering algorithms have seldom been reported due to the
tendency of some commercial and academic practitioners to keep
their work proprietary (Chen et al., 2007). Axelsson (2000) intro-
duced the core steps of PTD but without giving more details. Addi-
tionally, the manual of TerraSolid (Terrasolid Ltd., 2010) illustrates
the needed parameters about PTD but without publication of the
source code of the algorithm. Therefore, the classic PTD has been
implemented from scratch in this paper, and it is composed of five
steps as follows.

(1) Removing outliers



Fig. 1. Most ground measurements around break lines (enclosed by the ellipses) are not detected (they are wrongly classified as ‘‘off-terrain’’) by the classic PTD filter: (a)
original point cloud; (b) filtering result of the point cloud in (a).
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Fig. 2. Parameters in classic PTD: (a) selection of ground seed points and construction of TIN; (b) measurement of angle and distance; (c) mirroring process.
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Many datasets contain measurements that are far above or be-
low the earth surface, and these measurements are called outliers.
Outliers in the data are one of the circumstances under which the
filtering algorithms are likely to fail (Sithole and Vosselman, 2004),
especially for the filters with the assumption that the lowest point
in a grid cell must belong to the terrain. As a result, three sub-steps
are designed to eliminate the outliers. Firstly, the elevation histo-
gram is built and examined by visualizing the distribution of eleva-
tion values, and then elevation thresholds were determined to
eliminate the lowest and highest tails from the distribution. Sec-
ondly, the remaining outliers were searched using the minimum
height difference of each point with respect to all its neighbors.
Herein, a 2D kd tree is employed to query the neighbors of each
point. Points that are too high or too low with respect to their
neighbors, are removed from the dataset. Thirdly, errors yielded
by the automatic outlier classification are corrected manually.

(2) Specifying parameters

There are six key parameters in PTD to be preset, including:

1) Maximum building size, m. m is a length threshold, and the
algorithm can deal with buildings having a length of up to
this value. It is used to define the grid cell size.

2) Maximum terrain angle, t. t is a slope threshold, which deci-
des how the judgment of a unclassified point is performed
(either mirroring or not). If the slope of a triangle in the
TIN is larger than t, any unclassified/potential point located
inside of this triangle should be judged by a corresponding
mirror point. More details are presented in sub-step 4) of
step (4) illustrated in Fig. 2c.

3) Maximum angle, h. h is the maximum angle between trian-
gle plane and a line connecting a potential point with the
closest triangle vertex. If an unclassified point has a larger
angle than h, it is labeled as an object measurement, other-
wise as a ground measurement.

4) Maximum distance, d. d is the maximum distance from a
point to triangle plane during one iteration. If an unclassified
point has a larger distance than d, it is labeled as an object
measurement, otherwise as a ground measurement.

5) Minimum edge length, l. l is the minimum threshold for the
maximum (horizontally projected) edge length of any trian-
gle in the TIN. l is utilized to reduce the eagerness to add
new points to the ground inside a triangle when every edge
of a triangle is shorter than l. Note that l is measured in the
horizontal plane. Thus, introduction of l helps to avoid add-
ing unnecessary point density to the ground model and
reduces memory requirements.

6) Maximum edge length, l’. l’ is the maximum threshold for the
minimum (horizontally projected) edge length of any trian-
gle in the TIN. l’ is utilized to quit processing a triangle when
every edge of the triangle is shorter than l’. Thus, introduc-
tion of l’ also helps to avoid adding unnecessary point den-
sity to the ground model and reduces memory
requirements. However, this parameter is employed to thin
the ground points, and it has no relationship to filtering.
As a result, this parameter is not considered in this paper.

In conclusion, five parameters (m, t, h, d, and l) need to be preset
for the PTD herein.

(3) Selecting seed points and constructing the TIN

Determine the bounding box of the given point cloud dataset,
and fix the top left corner (xtopleft, ytopleft), bottom right corner
(xbottomright, ybottomright), width w and height h. The whole region of
dataset is divided into several tiles in rows and columns. Number
of rows and columns are determined by the following formula:

nRow ¼ ceil
h
m

� �
and nColumn ¼ ceil

w
m

� �
ð1Þ

where nRow is the number of tiles in rows, nColumn is the number of
tiles in columns, ceil(x) is used to return the smallest integral value
that is not less than x. The lowest point in each tile is selected as a
seed point. Additionally, the four corners on the bounding box
should be added to the seed points, as shown in Fig. 2a. Moreover,
each corner’s height is equal to the one of its closest seed point on
horizontal plane. At last, a TIN is constructed based on the seed
points, as shown in Fig. 2a, and it represents an initial terrain model.
Note the insertion of the four corners guarantees that any point in
the point cloud dataset is located inside the TIN. After the TIN is
constructed, the remaining points, except the seed points, are la-
beled as default object measurements.

(4) Iterative densification of the TIN
In each iteration, judging is performed in a point-wise style.

That means a potential point is judged based on the input thresh-
old parameters. In detail, the judgment is made as follows:

1) Locate the potential point, Ppotential(xP,yP,zP). Find the trian-
gle, Ttriangle, which the Ppotential is inside or on the edge of or
on the vertex of.

2) Calculate the slope of the triangle plane, Striangle. If Striangle is
no larger than terrain angle t, go to step 3). Otherwise, go
to step 4).

3) Calculate the following two parameters, as shown in Fig. 2b.
This first is the angle between Ttriangle and a line connecting
Ppotential with the closest triangle vertex, denoted as Aangle.
The second is the distance from Ppotential to Ttriangle, denoted
as Ddistance. If both of the following cases:

� Aangle is no larger than h,
� Ddistance is no larger than d,

are held, label Ppotential as ground measurement. Go to judgment
of next point.

4) Mirroring Ppotential, as shown in Fig. 2c. Find the vertex with
highest elevation value in Ttriangle, denoted as Pvertex(xv,yv,zv).
Ppotential is mirrored as follows:

xmirror ¼ 2xv � xP

ymirror ¼ 2yv � yP

zmirror ¼ zP

ð2Þ

where (xmirror, ymirror, zmirror) are the 3D coordinates of the mirror
point. Locate the mirror point, and calculate the angle and distance
parameters as done in step 3). If the mirror point is determined as a
ground point, label Ppotential as ground measurement, and go to judg-
ment of next point.

At the end of each iteration, the newly detected ground points
are added into the TIN as follows:

(1) Locate the ground point, Pground(xg,yg,zg). Find the triangle,
T 0triange, which the Pground is inside or on the edge of or on
the vertex of.

(2) Calculate the length of each edge of T 0triange in horizontal
plane. If the length of any edge is larger than l, add Pground

into the TIN and refresh the TIN. Otherwise, go to the judg-
ment of the next newly detected ground point.

(3) Repeat the above iteration until no further point has been
added to the set of ground measurements anymore.
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The above classic PTD filtering method has been widely applied
to various types of landscapes. However, it is still sensitive to steep
terrain despite mirroring being adopted, as shown in Fig. 1.

2.2. Point cloud segmentation method

Practice shows that the variety of 3D objects and the massive
amount of points, require introduction of some level of organiza-
tion into the data before the extraction of information can become
effective (Filin and Pfeifer, 2006). Such organization is segmenta-
tion. Point cloud segmentation is the process to partition an input
point cloud into coherent and connected point clusters (Melzer,
2007). Specifically, points on a certain geometric feature are coher-
ent points, such as co-plane, co-surface, and co-line points; whilst
connected points are a group of points in which every point has at
least one neighboring point within a certain distance (Wang and
Tseng, 2010). There are a variety of airborne LiDAR point cloud seg-
mentation methods, such as the surface growing method (Vossel-
man et al., 2004; Vosselman and Klein, 2010), scan line
segmentation method (Sithole, 2005), slope adaptive neighbor-
hood method (Filin and Pfeifer, 2006), and the octree-based split-
and-merge method (Wang and Tseng, 2010). Of all these methods,
the algorithm about SUSC is selected in this paper. This segmenta-
tion method has the following two stages.

(1) Normal and residual estimation

The normal for each point is estimated by fitting a plane to
some neighboring points. Therefore, k nearest neighbors (KNNs)
(Arya et al., 1998) is employed for the neighborhood search. To
fit a plane to a set of given points, in a least squares sense, we need
to find the parameters that minimize the sum of squares of the
orthogonal distances of the points from the estimated surface.
For details of plane fitting refer to Rabbani et al. (2006). The resid-
ual in the plane fitting arises from nonconformity of the neighbor-
hood of a point to the planar model, which means that the residual
can be used as an approximation of the curvature of the point
(Rabbani et al., 2006).

(2) Region growing

This stage makes use of the calculated point normals and their
residuals, in accordance with user specified parameters to cluster
points belonging to the smooth surfaces. The process of region
growing proceeds in the following steps (Rabbani et al., 2006):

(1) Input a residual threshold, r. In this paper, r is calculated
from the data using a specified percentile of the sorted resid-
uals in a descending order. A percentile of 95% turned out to
be a good choice.

(2) Input a smoothness threshold in terms of the angle between
the normals of a seed point and its neighbors, denoted as a.

(3) If all the points have already been segmented, go to step (7).
Otherwise select the point with the minimum residual from
the set of the still unlabeled points as the current seed, and
build an empty list of seed points.

(4) Determine the k nearest neighboring points of the current
seed. Add the points, whose angle difference to the current
seed is less than a, to the current region; simultaneously,
add the points, whose residuals are less than r, to the list
of seed points.

(5) If the seed point list is not empty, set the current seed point
to the next available seed point from the above list, and go to
step (4).

(6) Add the current region to the segmentation and go to step
(3), and clear the list of seed points.
(7) Finish the task of segmentation.

The above SUSC algorithm needs an adaptive parameter r and
two specified parameters, number of neighbors k, and angle a,
these two parameters should be determined based on experience
and the complexity of the landscapes. Among the three parame-
ters, r and a define the intended level of smoothness. The result
of the SUSC for the point cloud in Fig. 1a is displayed in Fig. 3.
Fig. 3 suggests that, after segmentation, the ground surface is
grouped into 2 dominant clusters, and the objects are also grouped
into many clusters. Moreover, most of the clusters contain a clear
majority of either ground or object points, whereas there are
hardly any mixed clusters. Particularly, despite the terrain clusters
being crossed by breaklines, terrain clusters may contain points on
both sides of slope discontinuities.

2.3. Improved method

The analysis in Section 2.1 suggests that the classic PTD is still
sensitive to steep terrain and breaklines, and the SUSC method
has the capability of grouping the smooth terrains into the same
clusters, even complex landscapes. Thus, we will improve the clas-
sic PTD using SUSC. The flow chart of the improved method is dis-
played in Fig. 4.

The main idea of combined PTD/SUSC usage is that all points
being located inside the same cluster (obtained by SUSC) as any
ground seed point (obtained by the PTD) are most likely ground
points as well. Our improved method is composed of six core steps:

(1) Removing outliers, as done in Section 2.1.
(2) Specifying parameters, as done in Section 2.1; additionally,

input of two additional parameters of the SUSC, i.e., k and
a, is needed.

(3) Selecting seed points and constructing a Delaunay TIN, as
done in Section 2.1.

(4) Ground surface growing. This step is modified from the
SUSC, with the following two differences. The first one is
that each of the initial ground seed points determined by
step (3) is selected as seed point one after each other unless
it has already been labeled in the improved method, rather
than the points with the minimum residuals for the classic
SUSC. The second one is that the segmentation would be fin-
ished if all initial ground points have been labeled. This
improved segmentation process will separate the whole
dataset into two subsets, the segmented points with label
number and the unsegmented points without label number.
As shown in both of Figs. 5d and 6d, many points are labeled
by the above point cloud segmentation process, which is
meaningful to the subsequent steps. Reclassify the seg-
mented points with label number as ground measurements,
and add the newly detected ground points into the TIN and
refresh the TIN.

(5) Iterative densification of the TIN, as done in the classic PTD.
(6) Repeat the above iteration until no further point can be

added to the set of ground measurements anymore.

3. Experiments and performance evaluation

A prototype software system for filtering ALS data has been
developed on a computer with Intel Pentium 2.40 GHz CPU and
2.98 GB RAM using VC++6.0 IDE under the Windows XP Operating
System. The PTD method (Axelsson, 2000), SUSC method (Rabbani
et al., 2006), and our proposed approach are integrated into the
developed system. Additionally, the triangulation of the ALS points
was done by integrating an existing implementation of a 2D Dela-
unay triangulator called Triangle (Shewchuk, 2005), and the KNN



Fig. 3. Result of SUSC with k = 30 and a = 30�: (a) top view of the result; (b) perspective view of the result. Note the point cloud is colored by labeling number in both (a) and
(b).

Fig. 4. Flow chart of our improved filtering method.
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was done by integrating an existing implementation of kd tree
called ANN (Mount and Arya, 2010).

3.1. The testing data

To compare the performance of the PTD method and our im-
proved method, the ISPRS Commission III, Working Group III data-
sets are employed to test the filters. The ISPRS testing data were
obtained by an Optech ALTM scanner over the Vaihingen/Enz test
field and the Stuttgart city center. It includes eight sites consisting
of different terrains: four urban sites and four rural/wooded sites,
as well as 15 reference samples of sub-areas. The eight datasets
are named as CSite1, CSite2, CSite3, CSite4, CSite5, CSite6, CSite7
and CSite8, respectively, as listed in Table 1. The overall character-
istics of 8 data sets refer to Sithole and Vosselman (2004). As the
CSite8 does not have a reference dataset, it was excluded for fur-
ther experiment and analysis. The test data cover various land-
use and land-cover types including buildings, vegetation, rivers,
roads, railroads, bridges, etc. The laser data were collected with
both first and last pulses recorded. The point spacing is 1–1.5 m
for urban sites and 2–3.5 m for rural sites, respectively. Moreover,
there are a total of 15 reference samples for testing the filtering
accuracy. Particularly, the reference data were generated by man-
ual filtering with knowledge of the seven landscapes and available
aerial images (Sithole and Vosselman, 2004).

3.2. Specification of the parameters

As mentioned above, our proposed filtering algorithm needs
two parameters more than the classic PTD method. In the follow-
ing experiments, the shared five parameters are set to the same
values for both of the filters, as shown in Table 1. All of the param-
eters are determined by the authors’ experienced judgment on the
conditions of the landscape, rather than by trial and error method,
which is meaningful for the various types of applications. Table 1
summarizes the parameters used for sites 1–7. Note that all raw
points are partitioned into filtering for the seven datasets, and
the numbers of detected outliers refer to Table 1.

3.3. Results

With the specified parameters in Table 1, we perform the filter-
ing on the seven datasets using the two methods. Among the filter-
ing results, we select the ones of CSite1 and CSite2 as two



Fig. 5. Filtering and results of testing data about CSite1: (a) the remaining point cloud after outlier removal; (b) TIN of the data in (a); (c) ground seed points for the two
filters; (d) detected ground measurements by the segmentation colored by the labeling number; (e) detected ground measurements by the classic PTD method; (f) detected
ground measurements by our method; (g) differences between (e) and (f).
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representatives to make a demonstration, as shown in Figs. 5 and 6,
respectively. Furthermore, results of Sample11, Sample23, Sam-
ple42 and Sample53 are also displayed to reflect the details of fil-
tering, as shown in Figs. 7–10, respectively.

CSite1 is located in an urban area, and its special features in-
clude steep slopes, mixture of vegetation and buildings on hillside,
buildings on hillside, data gaps. There are 2,732,814 points in the
raw data. 4970 points are identified as outliers and excluded from
the remaining filtering process, and the remaining data and its TIN
are displayed in Fig. 5a and b, respectively. During the third step,
1923 points are selected as ground seed points for the two filters,
as shown in Fig. 5c. In the resulting point cloud, 996,071 points are
detected as ground measurements for the PTD filter, as shown in
Fig. 5e. In our method, 764,205 points are identified as ground
points by the embedded SUSC algorithm, as shown in Fig. 5d; final-
ly, there are 1,191,155 measurements being detected as ground, as
shown in Fig. 5f. That means 64.16% of ground points have been
detected by the SUSC before going into the fifth step. The differ-
ences of Fig. 5e and f are shown in Fig. 5g. Fig. 5g suggests that
the main difference between the two results owns to the ability
of our method to preserve the ground measurements in areas with
steep terrain, as shown in the rectangular regions in Fig. 5e–g.
Fig. 5e shows that most of the ground points around steep areas
are omitted, and the lower part of a road across the steep terrain
is missed for the classic PTD. In contrast, Fig. 5f shows that the
ground measurements around the same steep areas and the whole
road are well preserved by our method.

CSite2 is also located in an urban area, and its special features
include large buildings, irregularly shaped buildings, a road with
bridge and small tunnel, plus some data gaps. There are 973,598
points in the raw data. 124 points are identified as outliers. The
remaining data without outliers and its TIN are displayed in
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Fig. 6a and b, respectively. During the third step, 70 points are se-
lected as ground seed points for the two filters, as shown in Fig. 6c.
In the resulting point cloud, 405,439 points are detected as ground
measurements for the PTD method, as shown in Fig. 6e. In our
method, 99,108 points are identified as ground points by the
embedded SUSC algorithm, as shown in Fig. 5d. Finally, 483,491
points are detected as ground measurements, as shown in Fig. 6f,
which means 20.50% ground points have been detected by the
SUSC method before going into the fifth step. The differences of
Fig. 6e and f are shown in Fig. 6g. The reason of the difference be-
tween the two results is our method’s ability to preserve the
ground measurement on some steep streets, as shown in the rect-
angular regions in Fig. 6e–g. Fig. 6e shows some road segments are
omitted for the classic PTD. In contrast, Fig. 6f shows all of the
roads are well preserved by our method.

Additionally, the detailed results from the references of Sam-
ple11, Sample23, Sample42 and Sample53, suggest that our pro-
posed method can correctly detect more ground measurements
than the PTD method in the case of:
� vegetation and buildings on a steep slope, as shown in Fig. 7;
� complex buildings, large buildings, break lines, as shown in

Fig. 8;
� railway station with trains, as shown in Fig. 9;
� break lines, as shown in Fig. 10.
� However, our method fails to identify the object measurements

under the following conditions:
� if the objects are closely attached to the underlying terrain sur-

face, as the bridge shown in the ellipse region of Fig. 6f and g;
� if the objects are both small and close to the ground surfaces, as

shown in Fig. 10f.

3.4. Performance evaluation

Both qualitative and quantitative assessments have been
adopted to evaluate the performance of the two filters. Visual
assessment of the filtered results of the seven datasets and 15 ref-
erences shows that, both the classic PTD method and our method
are robust to various types of complex landscapes such as data



Fig. 6. Filtering and results of testing data about CSite2: (a) the remaining point cloud after outlier removal; (b) TIN of the data in (a); (c) ground seed points for the two
filters; (d) detected ground measurements by the segmentation colored by the labeling number; (e) detected ground measurements by the classic PTD method; (f) detected
ground measurements by our method; (g) differences between (e) and (f).
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gaps, large buildings, irregularly shaped buildings, mixture of veg-
etation and buildings on flat terrains. However, the PTD algorithm
fails to preserve the ground measurements in the cases of steep
slopes, mixture of vegetation and buildings on a hillside, and just
buildings on a hillside. Our proposed filter, however, is more likely
to recognize the ground measurements when the PTD algorithm
fails. On the other side, compared with the PTD algorithm, our
method fails to identify the object measurements which are con-
nected to the terrain surface through a smooth transition such as
the very low buildings, as shown in the ellipse region in
Fig. 5e–g, and the bridges, as shown in the ellipse region in
Fig. 6e–g. The PTD algorithm would succeed when these conditions
occur.

Additionally, we follow the quantitative assessment as pro-
posed in ISPRS filter test (Sithole and Vosselman, 2004) to compare
the two filters. Three kinds of errors are computed during the val-
idation process, namely, type I errors (i.e., omission errors), type II
errors (i.e., commission errors), and total errors. The former two
types of errors are defined in Section 1, and the total error is the
percentage of any misclassified points. The three types of errors
of the two filters in the 15 references are listed in Table 2.

The statistics in Table 2 suggest that, both of the filters acquire
high accuracies in the seven datasets, covering from urban areas to
wooded areas, and the total error is less than 32.67% for all the fil-
tered results, as shown in Fig. 11c. However, generally, our method
has significantly lower type I error and total error than the PTD
method. Specifically, among the 15 references, there are fourteen
cases except the Sample21 where the type I errors of our method
are lower than the PTD method, and there are twelve cases except
the Sample21, Sample51, and Sample54 where the total error of
our method are lower than the PTD approach, as shown in
Fig. 11a and c. On average, compared to the PTD algorithm, the
type I error and total error of our method are approximately re-
duced by 10.01% and 5.71%, respectively. However, the classic



Fig. 6. (continued)

Table 1
Parameters of the two filters used for each site.

Scene Parameters

Total number of points (points) Number of outliers (points) Classic PTD method Our method

m (m) t (�) h (�) d (m) l (m) k (points) a (�)

CSite1 2,732,814 4970 20 80.0 6.0 1.4 1.0 20 30.0
CSite2 973,598 124 60 88.0 6.0 1.4 1.0 20 10.0
CSite3 754,054 786 35 88.0 6.0 1.4 1.0 20 20.0
CSite4 1,036,114 5128 60 88.0 6.0 1.4 1.0 25 30.0
CSite5 1,256,894 398 10 70.0 6.0 1.0 2.0 20 30.0
CSite6 1,101,952 4444 40 70.0 6.0 1.4 2.0 20 30.0
CSite7 786,134 2172 20 70.0 6.0 1.4 2.0 30 30.0
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PTD approach also has its advantage in avoiding type II errors. The
statistics in Table 2 tell us that, there are ten cases where our pro-
posed method has higher type II errors than the PTD algorithm, as
shown in Fig. 11b. However, the above disadvantage of our method
is not fatal. Considering that our method is likely to have lower
type I errors and total errors, our method will need less human
involvements compared to the PTD method, because the cost of
repairing the type II errors is far lower than the ones of repairing



Fig. 7. Filtering and results of reference data of Sample11: (a) the digital surface model (DSM); (b) the reference DEM; (c) the DEM generated from the result of the PTD
method; (d) the type I errors, type II errors of the PTD method; (e) the DEM generated from the result of our method; (f) the type I errors, type II errors of our method.
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the type I error in the stage of manual operation after automatic fil-
tering (Sithole and Vosselman, 2004).

Another disadvantage of our proposed approach is that it needs
two more specified parameters, namely k and a, needed for the
segmentation. Based on the scene complexity and statistics in
Table 1, CSite1 and Sample11 are selected to analyze the sensitivity
of the two parameters and the effect on three types of errors, and
the results are shown in Fig. 12. When k e [10, 30] and the other
parameters are constant, the type I errors decrease from 48% into
18%, the type II errors increase from 3% into 14%, and the total er-
rors decrease from 29% into 17%. The above obvious difference
owns to the sensitivity of k to the plane fitting in SUSC if k is not
large enough. However, when k is larger than 18, the three types
will not change significantly. Actually, when k e [18, 30], the type
I errors decrease from 27% into 18%, the type II errors increase from
9% into 14%, the total errors decrease from 19% into 17%, despite
there is also a slight fluctuation when k = 24 for the type I error.
Similarly, when a e [16�, 36�] and the other parameters are con-
stant, the type I errors decrease from 34% into 27%, the type II er-
rors increase from 6% into 8%, and the total errors decrease from
22% into 19%. In a word, the three types are not sensitive to the
change of values of a. Thus, we can get similar results if we chose



Fig. 8. Filtering and results of reference data of Sample23: (a) The DSM; (b) The reference DEM; (c) The DEM generated from the result of the PTD method; (d) The type I
errors, type II errors of the PTD method; (e) The DEM generated from the result of our method; (f) The type I errors, type II errors of our method.

Fig. 9. Filtering and results of reference data of Sample42: (a) the DSM; (b) the reference DEM; (c) the DEM generated from the result of the PTD method; (d) the type I errors,
type II errors of the PTD method; (e) the DEM generated from the result of our method; (f) The type I errors, type II errors of our method.
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Fig. 10. Filtering and results of reference data of Sample53: (a) the DSM; (b) the reference DEM; (c) the DEM generated from the result of the PTD method; (d) The type I
errors, type II errors of the PTD method; (e) the DEM generated from the result of our method; (f) the type I errors, type II errors of our method.

Table 2
Three types of errors of the two filters, i.e., PTD method and our method.

Dataset no. Type of error PTD (%) Ours (%) Dataset NO. /Types Type of error PTD (%) Ours (%)

Sample11 I 46.68 25.67 Sample51 I 4.91 2.05
II 3.4 8.84 II 3.8 16.97
T 28.21 18.49 T 4.67 5.31

Sample12 I 15.6 8.13 Sample52 I 19.2 12.53
II 1.92 3.61 II 4.95 16.77
T 8.93 5.92 T 17.7 12.98

Sample21 I 0.78 1.17 Sample53 I 26.66 4.25
II 10.47 18.23 II 1.44 37.22
T 2.93 4.95 T 25.64 5.58

Samp22 I 36.84 19.05 Sample54 I 8.76 3.59
II 3.23 3.44 II 2.53 8.82
T 26.36 14.18 T 5.41 6.4

Sample23 I 35.33 19.25 Sample61 I 18.52 16.62
II 3.82 4.05 II 2.82 2.49
T 20.42 12.06 T 17.98 16.13

Sample24 I 40.3 22.86 Sample71 I 16.81 10.07
II 12.54 13.41 II 3.5 13.39
T 32.67 20.26 T 15.3 10.44

Sample31 I 3.93 2.1 Minimum I 0.78 1.17
II 3.55 2.59 II 0.91 1.44
T 3.76 2.32 T 2.93 2.32

Sample41 I 60.34 39.54 Maximum I 60.34 39.54
II 0.91 1.44 II 12.54 37.22
T 30.55 20.44 T 32.67 18.49

Sample42 I 12.13 9.72 Average I 23.12 13.11
II 1.45 1.55 II 4.02 10.19
T 4.58 3.94 T 16.34 10.63
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slightly different values. The Fig. 12 also suggests that we have not
fine-tuned these particular examples so the results come out favor-
ably, but just made decisions on experiences, because k = 20 is not
the optimal result in view of three types of errors. From the param-
eters in Table 1, we conclude that k is greatly dependent on the
point density of the point clouds and the landscape complexity,



Fig. 11. Comparison of the three types of errors for the two methods: (a) type I errors of different algorithms for the samples; (b) type II errors of different algorithms for the
samples; (c) total errors of the two algorithms for the samples. Note ‘‘S’’ is abbreviation of ‘‘Sample’’ for the horizontal captions.
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and a is greatly dependent on the maximum slope of the terrain
and acquisition errors in the original point cloud data. Particularly,
a value of 20 for k and values from 10� to 30� for a turned out to be
feasible for most of the test datasets. In other words, the additional
two parameters do not significantly add complexity to our pro-
posed method. From the above statistics and analysis, we conclude
that our method has a significant reduction of the type I errors and
total errors compared to the PTD method without significantly
adding to the complexity of the algorithm, thus it is more practical
than the PTD method.

A further disadvantage of our method is that it needs more
computation time compared to the PTD method, because of the
segmentation and the insertion of its results into the TIN, as illus-
trated in Section 2.3. As far as the time cost is concerned, it takes
48.906, 18.093, 15.141, 20.25, 36.188, 25.578, 18.891 s to finish
the filtering tasks of CSite1-CSite7 respectively for the PDT method.



Fig. 12. Analysis on sensitivity of the input parameters k and a respectively, and its effect on the three types of errors for the Sample11: (a) values of k and the corresponding
three types of errors when a = 30�; (b) values of a and the corresponding three types of errors when k = 20.
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Correspondingly, the time cost is 594.828, 88.406, 72.109, 103.281,
378.089, 174.688, 118.328 s respectively for our proposed method.
On average, time cost of our method is 8.36 times of the one of the
PDT method on our computer. However, this paper focuses on a
filter’s accuracy rather than efficiency, and the efficiency of a filter
method is an easier problem to solve if parallel computing is
considered.

The advantages of our method result from the following two
factors. The first one is the adopting of the point cloud segmenta-
tion in the process of filtering. Particularly, the SUSC method will
expand the set of initial ground points to a large extent if the nat-
ural terrain is smooth enough, as shown in both of Figs. 5d and 6d.
As a result, the increased number of ground seed points reduces
the possibility of omitting the remaining ground measurements
for our filtering algorithm. The last but not least factor is the inher-
itance of the flow chart of classic PTD method. As mentioned above,
the PTD method is an excellent filter, and it has been widely ap-
plied due to the popularization of the TerraSolid commercial soft-
ware. Our approach makes best use of the flow chart of the classic
PTD algorithm, and only makes some improvement at some steps,
which yields the better performance of our method. However,
embedding the SUSC into the PTD is also a double-edged sword.
The point cloud segmentation also makes our method more likely
regard some object points attached to the terrain as ground points,
which probably increases the type II errors for our method, as
shown in Table 2 and Fig. 10f.
4. Conclusions and discussion

Filtering is one of the core post-processing steps for ALS point
clouds, and many filters have been proposed to solve this problem.
Among them, PTD is widely applied as one of the surface-based
ones. However, there are no details reported about this filter due
to the protection of proprietary work, therefore we implemented
the PTD from scratch. However, the PTD fails to preserve the
ground measurements in steep terrain areas, even if the mirroring
technique is adopted. Thus, the classic filtering method is im-
proved by the SUSC algorithm. The SUSC algorithm has the capabil-
ity of expanding the ground seed surfaces into surrounding smooth
terrains as much as possible. As a result, the SUSC is helpful to de-
rive more new ground seed points, which is useful to the subse-
quent densification of the TIN surfaces. The experiments make
use of the 7 datasets of ISPRS Commission III/Working Group III
to verify our proposed method; moreover, the 15 reference sam-
ples from the sub-areas are used to calculate the accuracies of
the proposed approach. The results suggest that both our method
and the classic PTD are robust to various types of landscapes. How-
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ever, our proposed approach is better than the classic PTD method
in preserving the ground measurements. Particularly, it may have
significant lower type I errors and total errors than the PTD algo-
rithm despite that it may have higher type II errors, which will re-
duce the costs of the following manual operations. However, our
proposed method may fail when it is faced with objects which
are attached to the ground, such as bridges, ramps, etc. The future
work will focus on the improvement of the proposed filter to re-
duce the type II errors.
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