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Abstract

Spurred by the increased interest in applying “dsktrol” techniques in an asset allocation content
offer a practitioner’s review of techniques thavd&een newly proposed or revived from academic
history. We discuss minimum variance, “1/N” or elgwaighting, maximum diversification, volatility
weighting and volatility targeting — and especidtigk parity”, a concept that has become a reakbu
word. We provide a taxonomy of risk control techugig. We discuss their main characteristics and thei
pluses and minuses and we compare them againsot#saiand against the maximum Sharpe Ratio
criterion. We illustrate their implications by meapf an empirical example. We also highlight some
important papers from the vast and still growitigriture in this field. All in all, this note ses/as a
practical and critical guide to risk control stigitss. It may help you to demystify risk controltteues,
to appreciate both the “forest” and the “trees &mjudge these techniques on their potential theri
practical investment applications.
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Introduction

Recently there has been increased interest in iagplsisk control” techniques in an asset allocation
context. Some examples of techniques that hasrmely proposed or revived from academic history are
minimum variance, “1/N” or equal-weighting, maximwiversification, volatility weighting and

volatility targeting — and especially “risk parifyd concept that has become a real buzz word.

In this note we provide tmxonomy of risk control techniques. We discuss their main
characteristics and thgituses and minuseswe comparethem against each other and against the
maximum Sharpe Ratiocriterion — and we illustrate thamplications by means of a single empirical
example that we extend throughout the note. Wehafgdight somemportant papers from the vast and
still growing literature in this field. All in allthis note serves as a practical and critical gtodésk
control strategies that may help you to appredaté the “forest” and the “trees” and to judge thes
techniques on their actual potential merits in ficatinvestment applications.

The main question in risk control isdoes it work ?” Do risk control techniques achieve e
antetargeted risk balance or risk profile ? Can weichhot spots (pockets of risk concentration in a
portfolio) and can we achieve diversification agaiesses ? Although these are natural questiopsge
in the context of risk control, the current disdass on risk control extend its significance toeoiifig
opportunities to reap risk-adjustedtperformance. But why would ignoring the return dimensier
anteproduce portfolios that are superior in termgxpostisk-adjusted performance ?

Several studies indicate that the historical adigpmance of risk control strategies can be linked
to overweighting asset classes that inrdag view mirror have paired high historical risk premia with
low risk levels (as is the case for bonds, e.gtpamplicit exposures to factor premia. Howevegusing
directly on factor exposures, as is donéaictor investing, provides a much more efficient and effective
way to capture factor premia. Still, focusing oalyrisk aspects when forming a portfolio is a petije
sensible starting point when one has only tmmfidence inex ante risk premia estimates From the
perspective of estimation risk, mis-estimationisk premia has the greatest impact on portfolio
composition and especially risk premia are not@iptard to estimatex ante For example, suppose
thatex anteyou cannot meaningfully differentiate betweernaalets’ Sharpe Ratios (so you assume that
all Sharpe Ratios are equal, implying that all ps&mia are proportional to their volatilities)eth
constructing a Maximum Diversification portfoliovgis the maximum Sharpe Ratio portfolio. When, in
addition to equal Sharpe Ratios, you cannot meéullgglifferentiate between asset correlationsy(so
also assume that all correlations are uniform); tiggplying Risk Parity gives the maximum SharpddRat
portfolio. So besides the risk dimension, alsogbntial relevance of risk control techniquesuiit-f
fledged risk-return optimization is not to be undstimated.
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1. Ataxonomy
Risk control strategies serve to control the riglfife of an investment portfolio or investmentagégy.
Risk is often equated with standard deviation ¢tdltreturn or differential return with respectato
benchmark), but most results carry over to downsglemeasures such as portfolio loss or Value-at-
Risk. Apart from being techniques to analyze, nmréind change a portfolio’s risk profile, a largetpof
the literature has promoted risk control as affeliged investment criterion -- suggesting thattaling
the risk dimension is sufficient to build a porifolWe revisit this issue when discussing the uainsk
control strategies in more detail. We start offwkwger, with sketching a taxonomy of risk control
strategies.

The main skeleton of risk control strategies htma series branch and a cross-section branch.

A. Time series (TS):
The objective of risk control over time is to catthe portfolio risk levebver time. There are two
closely related TS techniques :
= volatility weighting over time : the exposure todtrisky part of) a portfolio is adjusted according
to the level of forecasted volatility;
= volatility targeting : this is volatility weightingith the specific goal to achieve a pre-specified
level of portfolio volatility.
When weighting or targeting a portfolio’s risk léwwer time, the composition of a portfolio’s rispgrt
is not changed -- only the weights of the riskyt gend the risk free part are adjusted.



B. Cross-section (XS) :
The objective of risk control in the cross-secti®io control a portfolio’s risk profilat a given point in
time. The focus is across assets : reweighting théghiorconstituents so as to obtain a desired risk
profile. The main XS risk control strategies are :
= 1/N, or the equally-weighted portfolio
= minimum variance portfolio
= maximum diversification portfolio
= Risk Parity, that comes in two flavours :
- “Equal Risk Contribution” (ERC) or “full” risk paiy
- “Inverse Volatility” (IV) or volatility weightingin cross-section.

Finally, we escape from a risk-only perspective emalsider the Maximum Sharpe Ratio portfolio.
Before discussing the above techniques in moreldegoutline our empirical example that we’ll use

illustrate these techniques and their implications.

2. The empirical example and preliminaries
We consider monthly data over the 10Y period Ju220May 2012 (120 months) for a selection of US
assets classes. See Table 1.

Table 1 : overview of assets and their market cap @ight.

Assets : Abbrev : Market Cap Index :
Risk free rate of return

Equities Eq 45%
Aggregate Treasuries Tsies 30%
Corporate Investment Grade IG 20%
Corporate High Yield HY 5%

Data sources :

=  The risk free return comes from the Ibbotson “S$p&lls, Bonds and Inflation” database.

= Equities is the market factor from Kenneth Frendsitgbasé.

= The fixed income series are taken from BarclaygEiv

= Allreturns are in USD.
The composition of the market capitalization wegghportfolio “Mkt Cap” is estimated as per 20120Q1.
“EqWitd” is the equally-weighted portfolio. The degtive statistics are given in Table 2 on the next

page.

! The Ibbotson risk free rate and the market facéor be downloaded from
http://mba.tuck.dartmouth.edu/pages/faculty/kendhédata_library.htmi
2 Download fromhttps://live.barcap.com/




Table 2 : Statistics of US Excess Returns (p.a.) @vthe risk free rate (Jun 2002 - May 2012).

% Equities Tsies IG HY Mkt Cap EqgWtd
Return statistics :
avge p.a. 4.83 3.93 485 7.65 471 5.31
stdev p.a. 16.75 493 6.42 11.27 8.24 7.30
Sharpe Ratio 0.29 0.80 0.76 0.68 0.57 0.73
Correlations :
Equities -0.34 0.30 0.74 0.95 0.87
Tsies 0.52 -0.22 -0.06 0.00
IG 0.59 0.56 0.71
HY 0.79 0.90
Mkt Cap 0.46
Observations :

= Qver this historical period, fixed income assetsentbe real winners. This is not surprising given
the substantial tail wind from decreasing interasgs. Especially Tsies paired a substantial
average return with a relatively low level of risk.

= Equities showed the highest volatility, but viewihg Sharpe Ratio this was not matched by a
proportionally higher risk premium.

» Equities and Tsies were negatively correlated, igiog hedge opportunities (see the small
negative correlation between Tsies and the madg@portfolio).

= The highest correlation is between Equities and pbiiting at a high correlation between equity
risk and credit risk. Credit risk is dominant in Hiid the negative correlation between interest
rates and credit spreads manifests itself in tigatnee correlation between Tsies and HY.

Money allocation versus risk allocation

Themoney allocationin the market cap portfolio is given in Table 1.

For therisk allocation within the market cap portfolio, we compute theSDiegression slope or beta of
the assets against the market cap portfolio. ltmashown that this beta represents the relativeins
contribution of the corresponding asset to the aVportfolio risk (for details, see the Technical
Appendix). The component risk contribution is gilmnthe product of the investment weight and the
beta. Hence, the betas can be interpreted as jiltmént factors to transform money allocation g
allocation (note that the weighted average valugetd is unity). The risk allocation within the reir
cap portfolio is given in Table 3.

% Sources are (1) Securities Industry and Finandakets Association (SIFMA), US Bond Market Outstamy,
download fromhttp://www.sifma.org/research/statistics.as(®WorldBank, year-end market capitalization of
listed companies by country, download frbittp://data.worldbank.org/indicator/CM.MKT.LCAP.CRnd (3)
Barclays Live (for the relative IG and HY capitalfions).




Table 3 : Risk attribution with respect to Mkt Cap portfolio.
Eq Tsies USIG USHY sum

weight 45% 30% 20% 5%
beta 1.93 -0.04 0.44 1.08
% risk contribution 87% -1% 9% 5% 100%

From Table 3 we see a nasty surprise : the maggeportfolio appears to be a properly diversified
portfolio but in reality almost 90% of the risk Wi that portfolio is due to equities. (This waealdy
forewarned by the high correlation between equdigs the market cap portfolio as shown in Table 2.)
The same finding is reported for conventional 6@4Qity-bond portfolios in general, and for typical
“Yale” portfolios (were commaodities and/or alterivats are added to main holdings of equities and
bonds).

Although we focus on volatility as the risk measuhe same pattern arises when we consider the
average of the 6 largest monthly losses againgsigkdree rate on the market cap portfolio ovés th
period, see Table 4. Equities also contributeddytfe most to the realized losses (where the &6t
contribution of Equities is a coincidence with TaR).

Table 4 : Absolute and % contribution of assets taverage of 6
largest losses on the market cap portfolio (in ters of excess returns).

Cap Index Eq Tsies USIG USHY
-5.56 -4.84 0.00 -0.50 -0.21
100% 87% 0% 9% 4%

The extremely large contribution of equities towahside) risk within portfolios that seem only
moderately geared towards equities provided thetogpto the research into risk control stratedrethe
remainder of this note, we use this empirical edartpillustrate various risk control strategies.

Implied risk premia and the implied Sharpe Ratios
There is one additional perspective we’d like tghtight — a perspective that is helpful in evalngtrisk
control strategiesis a visthe maximum Sharpe Ratio portfolio. For each efpbrtfolios that we discuss,
we present thamplied risk premia and theamplied Sharpe Ratiosof the individual assets. Instead of
using actual risk premia and the variance-covaganatrix to calculate the maximum Sharpe Ratio
portfolio (MSRP), we assume that the portfolio abth actuallys the MSRP. Together with the variance-
covariance matrix of excess returns this allowsuwerive the “imputed” risk premia (pioneered by
Sharpe [1974]); together with the actual (histdjieaset standard deviations, we can then compate t
implied Sharpe Ratios. Hence, given a particulatfglo, these implied risk premia (or implied Shar
Ratios) would make this portfolio the maximum SleaRatio portfolio.

The process of calculating implied risk premiaaied “reverse portfolio optimization” ; for
details, see the Technical Appendix. Reverse optititn is relevant when there is uncertainty ateout
ante risk premia. After all, since the MSRP istdm@gency portfolio to the mean-variance efficient
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frontier without including risk free borrowing afehding, this portfolio is very sensitive to thepir risk
premia. Slight differences in these inputs canlteswery different (and sometimes “unrealistia” o
extreme and hence unacceptable) portfolios. As#ime time, estimating ex-ante risk premia is a very
difficult task. Reverse optimization can help sitlve assets’ implied risk premia serve as a sensibl
starting point. Depending on the confidence pldnezhe’s ex-ante views, one can next adjust the
implied risk premia accordingly. After this two-g&aprocess, the resulting portfolio is closer ® th
original portfolio and less extreme. This two-stagetfolio optimization process is proposed by RBl&c
Litterman [1992].

Table 5 : Implied risk premia and implied Sharpe Rdios within market cap portfolio
Eq Tsies USIG USHY
implied risk premium 9.09 -0.18 2.06 5.11
implied Sharpe Ratio 0.54 -0.04 0.32 0.45

Table 5 presents the implied risk premia and th@ied Sharpe Ratios of the market cap
portfolio. For Equities, the implied risk premiusiabout twice as large as the historical risk puami
For IG, the implied risk premium is less than tadlthe historical risk premium. So when the madagh
portfolio would be the MSRP, Equities would havefter a risk premium of 9% and I1G of 2%.
Conversely, when we would feel confident in extegdhe historical risk premia to the future, this
implies that we should increase the weight of 1@ Enver the weight of Equities in order to incretse
Sharpe Ratio of the market cap portfolio. For Tdiles implied risk premium (and hence the implied
Sharpe Ratio) is even slightly negative. This #fiehe role of Tsies as a hedge in the market cap
portfolio. Because of the negative correlation sie with Equities (and HY), their 30% weight ir th
market cap portfolio would be justified even whhait risk premium would be zero.

Notation
We use fairly conventional notation. We denoteviutlial asset standard deviations or volatilitiesdyy

The portfolio volatility isa, . The beta of asset i with respect to portfolis VB{L and its correlation with
the portfolio is denoted ag,, . The portfolio weight of asset i is denotedvis Where deemed

necessary, technical details are mentioned in thia text. For the quant minded, the Technical Aglden
contains a general background and additional desiva



3. 1/N or equal-weighting
Main reference :
= DeMiguel, Garlappi & Uppal [2009] “Optimal VersusaNe Diversification: How Inefficient is
the 1/N Portfolio Strategy?”
Recipe :
* In equally-weighted portfolios, each asset is as=iga weight of 1/N.
In our example, each asset class gets a weigHhi%fi@ the portfolio. Since we maintain these
weights over time, the 1/N portfolio is rebalaneoadnthly.
Characteristics :
= 1/N avoids concentrated positions -- in termsohey allocation!
= Within equities, 1/N implies an exposure to #mall-cap anomaly The market cap portfolio is
tilted towards large cap stocks. The 1/N portfdditilted towards small cap stocks and will hence
capture a size premium.
= 1/N implies adisciplined and periodical rebalancingof positions. By definition, the market cap
portfolio is a buy-and-hold portfolio. The 1/N pimfio, in contrast, implies a “volatility
pumping” effect : in order to maintain the 1/N alidion, one has to buy (sell) out- (under-)
performing assets. This is effectively a “buy I®&|l high” strategy, which profits from reversals.
Depending on the revision period, the rebalancioggss implies portfolio turnover with the
associated transaction cost and exposure to patdligjuidity (since even the smallest market
cap assets get a weight of 1/N).
= Estimation risk : in Bayesian terms, the 1/N portfolio is the “urumhed prior” : the naively
diversified portfolio that is optimal when one hasinformation to discriminate between the
attractiveness of assets.
=  When all assets have the same volatility and whiggaawise correlations are the same, then the
1/N portfolio is theMVP. In this case, the MVP also coincides with ERCP. See below.
*= 1/Nindices are published by MSCI and S&P, amormg st

From Table 2 we see that the 1/N portfolio hasghéii historical risk premium and a lower risk tllaa
market cap portfolio. This stems mainly from undeigtting Equities (with a lower Sharpe Ratio) and
overweighting HY (with a higher Sharpe Ratio).

Table 6 shows the 1/N portfolio statistics. It elgahows that equal money allocation is very defe

from equal risk contributions. Notably Tsies actastrong diversifier (negative correlation withues
and HY) and show (virtually) zero risk contributidstill, Equity risk dominates in the 1/N portfalio
accounting for 50% of the portfolio volatility. F&quities, the implied risk premium is 10.56% p.a.
(which given historical volatility implies a Shargatio of 0.63). When one believes that ¢éxeante

equity risk premium is below 10.56%, the weighEguities should be lowered in order to improve the
risk-adjusted portfolio performance. When one lvggethat thex antebond risk premium is above 2 bps
p.a., the weight of Tsies should be increased.\Eadgmt reasoning applies to IG and HY.



Table 6 : Risk attribution with respect to 1/N portfolio, and implied risk premia and SRs.

Eq Tsies IG HY  sum
weight 25% 25% 25% 25%
beta 1.99 0.00 0.62 1.39
% risk contribution 50% 0% 16% 35% 100%

implied risk premium 10.56 0.02 3.30 7.38
implied Sharpe Ratio 0.63 0.00 0.51 0.66

4. Maximum Diversification Portfolio MDP
Main reference :
= The MDP is proposed by Choueifaty & Coignard [2008)ward Maximum Diversification”
Recipe :
» The weights of the MDP are obtained by maximizimg ‘tdiversification ratio”, which is defined
as the ratio of weighted volatilities and portfoliolatility :

For obtaining insight into this ratio, note thag thortfolio volatility can be written as the
weighted sum of the product of each asset’s ind&idolatility and its correlation with the
portfolio. Hence, we can rewrite the diversificati@tio as :

2. W

2 MaX<s———
@Y o,

This expression reveals that the diversificatidioreompares (i) the portfolio volatility when
ignoring correlations in the numerator, with (ligtactual portfolio volatility when taking into
account correlation (and hence diversificationthia denominator. Imperfect (<1) correlations
increase the diversification ratio above unity.
Characteristics :
» |t can be shown that for the MDP it holds that (Ebeueifaty & Coignard [2008]) :

wheredo, / 0w; is the marginal contribution of asset i to poiiololatility. By definition,

within the global Minimum Variance Portfolio, akksets’ marginal risk contributions are equal,
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see section 5. It follows that for equal volaiij g; = g, the MPD coincides with the global

MVP.
»  From (3) it also follows that when risk pren{iﬁf} are proportional to volatilitieéa,-} , thus

implying that all assets have the same Sharpe Rh&a the MDP is thBISRP. After all, in the
MSRP the assets’ marginal contributions to thefpliotrisk premium are proportional to the
assets' marginal contributions to portfolio volgtjlimplying :

(4) iaap :iaap - T'_f:rl_f
Ti

ow, T ow, Bo  Bip

(see section 8).
= Choueifaty & Coignard [2008] also show that eactetbas theame correlationwith the MDP.
» FTSE publishes the FTSE TOBAM Maximum Diversificatiindex Series.
Evaluation :

»  Why should one maximize this specific diversificatratio ? After all, there are many
definitions of “diversified” !

» The diversification ratio is differential diversification measure. It applies with respecite
specific portfolio at hand. It is no absolute dsiéication measure from which we can read the
degree of diversification; we cannot compare thvewdification ratios of two different portfolios
to infer which portfolio is more diversified thalnet other.

= The MDP isnot unique and may be vergoncentratedin weights (money allocation) or in risk
and loss contributions (risk allocations). Inddadyur example IG carries zero weight in the
MDP, see Table 7.

Table 7 : Risk attribution with respect to MDP, andimplied risk premia and SRs.
Eq Tsies IG HY  sum

weight 16% 73% 0% 11%

beta 222 065 120 1.49

% risk contribution 36% 48% 0% 16% 100%
implied risk

premium 994 293 539 6.68
implied Sharpe

Ratio 059 059 0.84 0.59

Tsies have the highest weight in the MDP; the mai®gation of 73% here implies that Tsies

account for about 50% of the portfolio risk. Thasdhardly be termed a “diversified portfolio”...
» Table 7 also shows that the implied Sharpe Rafitisecthree portfolio components equals 0.59.

This confirms that when Sharpe Ratadghe portfolio constituentsare the same, then the MDP
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is theMSRP. Note that this only applies to assets comprisgtié MDP; by construction, the
composition of the MDP does not depend on risk paean Sharpe Ratios.

* The portfolio statistics are depicted in Table & the historical inputs, the MDP beats the
market cap and 1/N portfolios in risk-adjusted parfance. This is due to the large overweight of
Tsies which over the past decade showed the hi@espe Ratio.

Table 8 : Comparative portfolio statistics.

Cap
Portfolio stats Wid 1/N MDP
avge 471 531 4.47
stdev 824 730 4.26
SR 057 0.73 1.05

» Finally, note that we use the full historical saenfid calculate the weights of the MDP. In
practical applications, one would use trailing dvistal windows (avoiding a look-ahead bias) to
re-calculate the weights. In this way, the out-@faple properties of the MDP can be evaluated.

5. Minimum Variance Portfolio MVP
Main references :
= Haugen & Baker [1991] “The Efficient Market Inefiéncy of Capitalization-Weighted Stock
Portfolios”,
show that market cap weighted portfolios are iwédfit (sub-optimal) when there are market
frictions and highlight the high relative perforneanof low volatility portfolios
= Clarke, DeSilva & Thorley [2006] “Minimum Variand@ortfolios in the US Equity Market”,
extend Haugen & Baker’s empirical research
= Blitz & van Vliet [2007] “The Volatility Effect : lower Risk Without Lower Return”,
revive the interest in the low volatility anomalydaprovide possible explanations (behavioural
biases, leverage restrictions, and delegated fiortfanagement and benchmarking)
= Scherer [2011] “A Note on the Returns From MinimuWariance Investing”,
links the returns on the MVP to factor premia
Recipe :
= Choose the portfolio weights to minimize portfoliariance :

2
6)  maxo, =22 wwoog
i

{w

» The optimal portfolio is characterized by equal gnaal contributions to portfolio risk :
do, _00,
oW Ow

I J
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Characteristics :

00, O
Note that marginal risk contributions are given—lgy£ =—E8=p b, so all assepetaswith
W Oy

respect to the MVP are identical.

00
Since an asset’s risk contribution equvMsa—p ~ W, risk contribution is proportional to the
W

investment weight, sosk allocation equals money allocation
When all assets have the same volatility and wiigraawise correlations are the same, then the
MVP is thel/N portfolio. After all : it pays to diversify over the assbtg in the portfolio

context, all assets are perfect substitutes.
the MVP is theV'SRP when all assets have the same risk prem@m,? (implying that all

Sharpe Ratio$R; are proportional td/Ui). Atfter all, in that case we have (cf. eq.(4)) :

(6)

Evaluation :

The MVP favours low volatility assets and low batsets and hence benefits from the low
volatility anomaly. TheMSCI Minimum Variance Index and theS&P Low Volatility Index

are examples of low risk portfolios that are des@jto benefit from this anomaly.

For more information on the low volatility anomasge Blitz & van Vliet [2007].

Several studies have documented that MVPs alsoygiakher priced anomalies. Clarke, DeSilva
& Thorley [2006] find that, in general, the MVP hasubstantially highefralue (B/P) exposure
than the market (since value stocks tend to havevtdatilities), which explains at least part of
its higher average realized return. Scherer [28hbjvs that the MVP loads significantly on the
Fama-French factors (large size and high valueglsatfinds that MVPs have a negative beta
bias (favoulow betaassets) and favour assets v residual volatility. The latter effects
crowd out the Fama-French factors in the sensddiabeta and low residual volatility alone can
explain more of the variation in the MVP’s excestirns than the Fama-French factors. This
leads Scherer to conclude that low beta and loiduabvolatility is a more efficient and
effective way to capture the low volatility anomaan minimum variance.

When time passes and the MVP is re-optimized, alieeed to apply constraints on turn-over
in order to mitigate transactions costs. Howewendver constraints make the MVPath
dependentstrategy.

The MVP is aconcentratedportfolio. Assets with low volatility and/or lowocrelations with
other assets will carry a large weight. Conversagets with high volatility and/or high
correlations with other assets will carry a smakween negative weight; when excluding short
positions, these assets will not appear in the MMi#s is illustrated in Table 9 : I1G is not
included in the long-only MVP.
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Table 9 : Risk attribution with respect to MVP, andimplied risk premia and SRs.
Eq Tsies IG HY sum

weight 8% 80% 0% 12%

beta 1.00 1.00 131 1.00

% risk contribution 8% 80% 0% 12% 100%
implied risk

premium 4.44 444 584 444

implied Sharpe Ratio 0.27 090 091 0.39

Table 9 confirms that when tlassets comprised in the MVRhave identical risk premia, then
the MVP is theMSRP. Note again that this only applies to assetsahmtomprised in the MVP
in the first place.

= Table 9 also confirms marginal risk contributiomdy/P constituents are identical (all betas
equal unity) and that money allocation equals aisbcation in a MVP.

= Table 10 shows the portfolio statistics. The Mk premium is about the same as the MDP’s
risk premium, but its volatility is lower, thus Yyeng a higher Sharpe Ratio. This lower volatility
is achieved by overweighting Tsies at 80%, supptdetby positions in Equities and HY which
are negatively correlated with Tsies.

Table 10 : Comparative portfolio statistics.

Cap Wtd 1/N MDP MVP
avge 4.71 531 447 4.44
stdev 8.24 730 426 3.99
SR 0.57 0.73 105 111

= Last but not least, the quadratic optimization ulyilegy the MVP has the property of being “error
maximizing”, see Michaud [1989]. This implies thlaé composition of the MVP is very sensitive
to slight differences in variances and covarian@éisen (part of) these differences are not real
but due to sampling error, this will propagate iptwtfolio composition.

= Again, note that we use the full historical santplealculate the weights of the MVP.

6. Equal Risk Contribution portfolio ERCP — full Ri sk Parity
Main references :
= Qian [2005], “Risk Parity Portfolios : Efficient Réolios Through True Diversification”,
this is the seminal paper on risk parity
= Qian [2006], “On the Financial Interpretation osRIContribution; Risk Budgets Do Add Up”
this paper is on the linear decomposition of risk
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Hallerbach [2003], “Decomposing Portfolio ValueRisk, A General Analysis”,

extends risk decomposition to Value-at-Risk andaghlbow to decompose risk in parametric and
non-parametric (simulation) settings

Maillard ea [2010],"The Properties of Equally Weigd Risk Contribution Portfolios”,
discusses the theoretical properties of risk pagritfolios and provides a comparison with other
risk control techniques

Lee [2011] “Risk-Based Asset Allocation : A New Avexr to an Old Question ?”,

provides a good discussion of risk control techegjwith especially a critical evaluation of Risk
Parity (see also section 10)

Asness, Frazzini & Pedersen [2012] “Leverage Awvarand Risk Parity”,

document the empirical outperformance of a risktypatrategy over a market cap weighted
portfolio and refer to the leverage aversion efteatxplain this outperformance

Anderson, Bianchi & Goldberg [2012] “Will My Riskafity Strategy Outperform?”,

critically review and refute the empirical eviderprevided by Asness, Frazzini & Pedersen
[2012]

Recipe :

The ERCP rests on the premise that no asset stlooithate the portfolio risk profile.
Consequently, all assets’ contributions to portfoisk are equalized. The contribution of an asset
to portfolio risk equals its investment weight niplied with its marginal contribution to portfolio
risk. An asset’s marginal contribution to portfotiek equals its beta with respect to the portfolio
Hence, the weights of the ERCP satisfy :

aap_aapw A =wp
IaV\/i_aWj J WP_VYJP

(7)

Hence, the weights in the ERCP are proportionghédnverse of the corresponding betas :

(8) WERC 1

: il
B
Since by definition the contribution of each adeqtortfolio risk must equal 1/N, the

composition of the ERCP can easily be calculatdekirel by requiring that for each asset
W3, =1/N.

Characteristics :

The ERCP is th&/N portfolio when all assets have the same volatifityand when all pairwise
correlations are uniform g0 . After all, in that case eq.(7) implies thato o = w; 0 o, which

is satisfied forw; =w; =1/N.

The ERCP is thDP when all correlations are uniforma,, = o, .

The ERCP is th&1VP when correlations are uniform (pairwise equal) antheir theoretically
lowest level ofp=-1/(N —-1). See Maillard ea [2010].

15



The ERCP is th&1SRP when all correlations are uniform and all assetgetthe same Sharpe
Ratio.

See Maillard ea [2010].

When there are only two assets, the ERCP equal¥Ehésee section 7).

Evaluation :

“Risk” is usually equated with standard deviatidmegurn (volatility), but in principle any other
risk measure can be chosen as long as the riskunecigdinearly homogeneous in the portfolio
weights. This means that when multiplying all invesnt weights with a constant c, the risk
measure is also multiplied by the same constapbufolio loss, Value-at-Risk (VaR) and
Conditional VaR (or Expected Tail Loss) satisfysthroperty. See Hallerbach [2003], e.g.
Since we can rewrite beta as the product of (1gtheslation with the portfolio and (2) the

guotient of the asset and portfolio volatility, ﬁb = PpTit /pr , €0.(8) implies that ERCPs

favour assets with low levels of volatility and l@errelations with other assets (hence :
“portfolio diversifiers” )
The portfolio statistics are depicted in Table 11 :

Table 11 : Comparative portfolio statistics.

Cap

witd 1I/N MDP MVP ERCP((4) ERCP(3)
avge 4.71 531 447 4.44 4.79 4.47
stdev 8.24 730 426 3.99 4.77 4.60
SR 0.57 073 105 1.11 1.00 0.97

ERCP(4) is on the basis of the 4 original assetERCP(3), IG and HY are combined into one
asset class. The table shows that the ERCPs hatl lzddbthe risk of the market cap portfolio at
comparable levels of average return, yielding atrdosible Sharpe Ratios. This is due to
overweighting Tsies and underweighting Equitieg (Fable 12).

The ERCP is perfectlgliversified in terms of risk (loss) contributions.

The ERCP idess concentratedhan the MVP and the MDP, and it containd\aiissets.

The ERCP is moreobust, i.e. less error maximizing, than the MVP. Thaiitite reason is that
the MVP is found by means optimization, i.e. by equating marginal risk contributions,
whereas the ERCP is found byestriction on the product of weights and marginal risk
contributions.

It can be shown thatryp < Ogrc < 0y \, Where the MVP is error maximizing and the 1/N

portfolio focuses on money allocation, not risloalition. Hence, the ex-ante volatility of the
ERCP is between the lowest level (from the MVP) tdvolatility of the naively diversified
1/N portfolio.

See Maillard ea [2010] for details.

Calculating the ERCP is a daunting task when theb&r of assets is very large. A solution
would be to resort to a hierarchical procedure Inicv risk parity is first applied within groups
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(sectors, countries,...) and next across groups. Meryere-grouping directly influences the
ERCP, see below.
Table 12, Panel A, shows the composition of the ER{bte the large 52% weight of Tsies, this

is due to both their low volatility and their neigatcorrelation with Equities and HY. The high
volatility of Equities implies a lower than 25% wat. The implied risk premia and Sharpe
Ratios can be interpreted as before.

Table 12 : Risk attribution with respect to ERCP, and implied risk premia and SRs.

Panel A : ERC (4) Eq Tsies IG HY sum
weight 12% 52% 21% 15%

beta 2.06 048 121 1.68

% risk contribution 25% 25% 25% 25% 100%
implied risk premium 9.86 229 577 8.02

implied Sharpe Ratio 0.59 046 090 0.71

Panel B : ERC (3) Eq Tsies IG+HY

weight 16% 57% 26%

beta 2.06 0.58 1.26

% risk contribution 33% 33% 33% 100%
implied risk premium 9.19 2.59 5.64

implied Sharpe Ratio 0.55 0.53 0.84

= The composition of the ERCP depends on choosinguhger of assets and hence on any

pre-grouping of assets (see Lee [2011]). For example, wheregaging IG and HY into a single
credits sub-portfolio, ERCP(3), the risk allocasahift from 25% to 33%; see Table 12, Panel B.
In Table 11 we see that, in this particular exampdenbining IG and HY has almost no historical
performance consequences.

Leverageis needed to boost the low risk and return of RBrder to match any risk budgets or
return targets.

Again, note that we use the full historical santplealculate the weights of the ERCP. In
practice, one would sequentially derive ERCPs oo#ting data windows. In back-tests, one
should avoid any look-ahead biases when implemgiidiverage and rebalancing.

In their empirical study, Asness, Frazzini & Pederf2012] illustrate thaistorical
outperformance of ERCPs (or IVPs since they consider only twetsksses, US equity and
bonds) over a market cap weighted portfolio overghriod 1926-2010. As an explanation they
raiseleverage aversioras the driving force behind the performance of BRCT his mechanism
works as follows. (Some) investors are aversedgtricted) to applying leverage and they bid up
the prices of high risk / high beta assets in otddill their risk budget. As a consequence, the
risk premium offered on high risk assets is redutegv beta (risk) assets offer higher risk-
adjusted returns, and high beta (risk) assets ffezr risk-adjusted returns. A less than average
leverage-averse / -constrained investor can bemefitverweighting low beta (risk) assets and
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7.

underweighting high beta (risk) assets. Leveraggjsied to fill the risk budget or to attain a
targeted risk level. In addition to leverage avarsihe’lottery ticket effect” may be at work, in
which investors with a propensity to “gamble” ovidrfor high risk assets, thus reducing their
risk premium. Finally, delegated portfolio manageimeentered around benchmarked portfolios,
implies that low (high) risk stocks have large (8jrteacking error. As argued by Blitz & van
Vliet [2007], this introduceghe low volatility anomaly, implying a flat or negative risk-return
trade-off. Since low volatility assets outperforndeERCPs overweight low risk assets, this may
explain their outperformance.

Anderson, Bianchi & Goldberg [2012] raise some@esiback test issues in the research by
Asness, Frazzini & Pedersen [2012]. First of &kkyt note that the outperformance of the ERCP
is not uniform over sub-periods. Secondly, theywsttat market frictions (borrowing costs and
turn-over induced trading costs) eat into perforogaiT hirdly, they argue that Asness, Frazzini &
Pedersen’s [2012] risk parity strategy is not aregtable strategy since it uses unconditional
leverage : they use a constant scale factor, cadgum the full 1926-2010 period, to match the
volatilities of the levered risk parity strategydathe market cap portfolio. Hence, their empirical
set-up suffers from a look-ahead bias. Andersoan@ii & Goldberg [2012], in contrast, use
conditional leverage where at each rebalancingttiateolatility scale factor is derived from past
3Y trailing windows. They show that implementinghddional leverage halves the cumulative
total return of the risk parity strategy as repoidy Asness, Frazzini & Pedersen [2012].
Realistic borrowing costs and trading costs furtieeluce the cumulative total return of the risk
parity strategy. In all, these realistic adjustrsentike the performance difference between the
risk parity strategy and the market cap portfoigagpear...

Inverse Volatility Portfolio IVP — naive Risk Pa  rity

Main reference :

Maillard ea [2010],"The Properties of Equally Weigd Risk Contribution Portfolios”,

they discuss IVP next to ERCP, although volatigighting (or “normalization”) has been
applied for long by practitioners to improve cresset comparability and to reduce portfolio or
strategy risk. (This may be inspired by statistiglsere inverse variance weighting is used to
minimize the variance of the sum of two or mored@n variables.)

Recipe :

Set each weight proportional to the stand-alonatility of the corresponding asset and

normalize so that the weights sum to unity. Thiktiity-weighting in the cross-section yields :
1

© w2l

! 1

Zj 71-
The IVP is equivalent to tHeERCP when there are only two assets. (In the two-asss, the
correlation is irrelevant.)
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* The IVP is equivalent to tHeERCP when correlations are uniform (or zero). Neglagtin
correlation information makes IVP a “naive” riskiipastrategy.
Characteristics :
» When correlations are uniform (or zero), the IVEhisECRP. (In that case, all comments made
for ERCPs also apply for IVPs). When everythingatsequal, then compared to the IVP, the
ERCP will be tilted towards low correlated assets.

* When correlations and volatilities are uniform, ti@ is thel/N portfolio.

= TheS&P Low Volatility Index is composed of the 100 stocks from the S&P500 Ivdéxthe
lowest (252 days past) volatility, where each stsakeighted with its inverse volatility.

» TheMSCI Risk Weighted Indicesuse inverse variance (and not volatility) to weigh

constituents. Inverse variance weighting yieldsNh& when all correlations are uniform (or
zero).

Evaluation :
= Except for the impact of (markedly different) cdateons, IVPs are quite similar to ERCPs. As
shown in Table 13, the IVP assigns more weigh@Gdwas 21%) and less weight to Tsies (was
52%). The latter can be explained because the ¢¥Brés the negative correlation with Equities
and HY. This shift in weights translates into lbatanced risk contributions.

Table 13 : Risk attribution with respect to IVP, and implied risk premia and SRs.
Eq Tsies IG HY  sum

weight 12% 40% 31% 18%
beta 2.01 0.34 1.09 1.67
% risk contribution 24% 13% 34% 29% 100%
implied risk premium 9.99 167 544 832
implied Sharpe Ratio 0.60 0.34 0.8 0.74

= Table 14 shows that the IVP has somewhat highatiligt and average return than the ERCP.
This combined effect is due to the lower weighTsies (which have the lowest average return,
the lowest volatility, and negative correlationshwiEquities and HY).

Table 14 : Comparative portfolio statistics.

Cap

Wtd 1I/N MDP MVP ERCP IVP
avge 4.71 531 447 444 479 497
stdev 8.24 730 426 399 477 528
SR 0.57 073 105 111 1.00 0.94
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8. Maximum Sharpe Ratio Portfolio MSRP
Main references :

For a discussion of the Sharpe ratio, see Shag$]1
For mean-variance portfolio theory and for findihg MSRP, we refer to standard investment
texts.

Recipe :

Choose the portfolio weights to maximize the Sh&pto :

a!

10) maxSR =-H
(10) na R )

Q

This can be accomplished by quadratic optimizatborin Excel by first defining an extra column
with portfolio returns given an array of weightslamext to maximize the Sharpe Ratio of this
portfolio returns series.

Hence, in the familiar excess return-risk graph siveuld maximize the slope of the ray
emanating from the origin, as shown in the figuetoty :

ot

» 0

pf

Characteristics :

Within the MSRP, the ratios of marginal contribusdo risk and return are constant. Since an
asset’s marginal contribution to the portfolikkremium equals the asset’s risk premiugm,

and since this asset’s marginal contribution tdfpbo risk is its beta,ﬂip , We require :
e [ By =Tjs | B, =T (where the last equality follows from the facttttiee portfolio beta
equals unity). Note thaf; /,B,p is the Treynor [1966] risk-adjusted performanderadence,

for each asset within the MSRP, the risk premiupusthbe equal to the product of its beta with
respect to the MSRP and the risk premium of the RISR

(11) T|f = lglpr_pf :

This is the first-order condition of mean-variamgdimality. (When invoking market
equilibrium, this becomes the familiar “Security et Line” of the CAPM.)

Since we can rewrite the beta as the product ah@yorrelation with the portfolio and (2) the
quotient of the asset and portfolio volatilitfg, = 0,0y / 0 , it follows that in the MSRP the
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stand-alone asset Sharpe Ratios and the portf@iespe ratio are related by5R = o, SR.
When SR > Py Slg, we can increase the Sharpe Ratio of the portltiocreasing the weight

of (or adding) the asset to the portfghio

Without any additional constraints, the long-onlgRIP can be a very concentrated portfolio.
When all volatilities, correlations and risk prerai@ the same, then the MSRP is1f¢

portfolio (which then also coincides with tBERCP and theMVVP). After all, diversification
lowers risk but in the portfolio context all assets perfect substitutes. It is not possible todow
portfolio risk or increase the portfolio risk pram by changing the weights. Hence, we end up
with the equally-weighted portfolio.

Evaluation :

The MSRP has the maximum Sharpe Ratio, see TablEhl®is so by construction, since we
optimized the Sharpe Ratio over the full historgample period (in-sample). In practice, one
would sequentially derive thex anteMSRP from trailing data windows. Whether the MSRP
indeed delivers the maximum Sharpe Ratigpostdepends on the quality of the inputs,
especially the risk premia.

Table 15 : Comparative portfolio statistics.

Cap

1I/N MDP MVP ERCP IVP  MSRP
Wid

avge
stdev
SR

471 531 447 444 479 497 4.98
824 730 426 399 477 528 4.20
057 073 105 111 1.00 0.94 1.19

In our example, the MSRP is indeed a concentrabetfiotio, containing mostly Tsies
supplemented with HY, see Table 16. Tsies domibatause of their low volatility and negative
correlation with HY. The smaller than unity betalaies reveal that Tsies are included as a
diversifier; the larger than unity beta of HY shatlvat HY is included because of its (highest)
average return). Slight changes in the risk preshigsies and HY will change the composition of
the MSRP markedly.

Table 16 : Risk attribution with respect to MSRP, and implied risk premia and SRs.

Eq Tsies IG HY sum

weight 0% 72% 0% 28%
beta 1.10 0.79 136 1.53
% risk contribution 0% 57% 0% 43% 100%
implied risk premium 549 393 6.7/ 7.65
implied Sharpe Ratio 033 080 1.05 0.68
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9. Volatility weighting over time

The risk control strategies as discussed befonesfoa risk in th&ross-sectioni.e. over portfolio
constituents. Risk control at each point in tim# also affect the portfolio’s risk level (or more
generally, its return distributiomver time. Volatility weighting over time, and specificalyplatility
targeting, is designed to explicitly control the portfolisk level over time.

Main references :

Kirby & Ostdiek [2012] “It's All in the Timing : Snple Active Portfolio Strategies that
Outperform Naive Diversification”,

volatility weighting over time is quite widesprespractice, but this paper documents the
empirical finding that volatility weighting improgehe Sharpe Ratio

Hallerbach [2012], “A Proof of the optimality of hatility weighting over time”,

the title is self-explanatory .... The result holdslar mild assumptions.

Recipe :

Set the risky portfolio’s target volatility lev#
At the start of each period t, take a position whi@ risky portfolio and (1-w) in the risk free ass

(12) w0, +(1-w) O =w, [0 + 1y

Estimate the volatility of the risky portfolio feeriod t : J; .

For example by using an adaptive Exponentially-\Wisd Moving Average (EWMA) volatility
process.
\%
Rescale the exposure to the risky portfolio totérget volatility level V :w, = ——.
t
According to (12), this implies adding a cash posibr borrowing (when allowed) at the suitable
borrowing rate, subject to a leverage constraint.

Apply the leverage constraint. When the volatitayget V is high or when the forecasted
volatility is low, cap the implied borrowing by sieg W, < L, where the maximum leverage ratio

satisfiesL >1. WhenL =1, no borrowing is allowed.

Characteristics :

Volatility weighting and volatility targeting accatish volatility smoothing over time.

Volatility smoothing mitigates the volatility of ¢éhportfolio volatility over time. It can be shown
that the lower the fluctuations of the temporahg§tantaneous”) portfolio volatilitywithin some
time period, the lower the aggregate volatititser the whole time period. For details, see
Hallerbach [2012].

Note that volatility smoothing is different fromturn smoothing. Return smoothing aims at
achieving a lower aggregate level of return vdtsgtiland not a lower volatility of the volatility
over time). Return smoothing thus implies less faace slippage” in compounded returns. This
variance slippage refers to the difference betwieergeometric mean and the arithmetic mean.

22



As an approximation, we have

geometric mear arithmetic mean — %2 variance. Lowering the retiamance by return
smoothing thus increases the geometric mean ahsstaet. par.

Naive Risk Parity or th&/P, i.e. vol weighting in XS, already establishes soralatility

weighting in TS.

Risk targeting or risk control indices have bedrmoiduced by S&P, MSCI, FTSE, DJ, and EURO
STOXX.

Evaluation — or : Why would volatility targeting work ?

10.

First of all, depending on the quality of our vdigt forecasts, we should be able to target a
portfolio’s volatility to some degree over time.

In addition, it can be shown that this volatilitysothing increases the Sharpe Ratio or
Information Ratio of the portfolio, cet. par. (fdetails, see Hallerbach [2012]).

Furthermore, the (risk-adjusted) return of a viitattargeted portfolio benefits from an
additional timing effect, due to the so-calkesl/mmetric volatility phenomenon The

asymmetric volatility phenomenon is a stylized féett is observed for most financial markets.
In general, returns tend to be negatively corrdlatgh the volatility of subsequent returns. More
specifically, surges in financial market volatildye mostly associated with negative returns. The
volatility feedback mechanism is that higher expdatolatility translates into a higher risk
premium and hence lower realized returns. Henademasymmetric volatility, there istianing
effect (in addition to the smoothing of volatility) thaill boost performance. After all, a
volatility-weighting strategy takes large positiomgen volatility is low (and returns are high)
and small positions when volatility is high (anturas are low).

As a cautionary (and perhaps superfluous) notestress that implementing a volatility-weighted
strategy calls for a strict risk-budgeting and His@nitoring process. In particular, one may want
to set limits to the maximum position size in orttiemitigate the risk dblow-ups when the
contemporaneous volatility is relatively low.

Evaluation

Main references :

Inker [2011], “The Dangers of Risk Parity”

Lee [2011], “Risk-Based Asset Allocation : A New gwrer to an Old Question ?”

Leote de Carvalho, Lu & Moulin [2012], “DemystifyarEquity Risk-Based Strategies : A Simple
Alpha plus Beta Description”

Goldberg & Mahmoud [2013], “Risk Without Return”

Using risk control techniques (and especially Rskity) as full-fledged investment criteria is stimes
coined the “new paradigm” in investing. Indeed,samtional 60/40 portfolios or MSRPs are
concentrated in risks and fail to offer diversifioa against losses. Risk Control strategies, asfl R
Parity in particular, can produce balanced pofhnd can offer various degrees of diversification
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From a risk perspective, these techniques are thebgegected to deliver what they promise. The citch
that risk control portfolios appear to have histallly outperformed market cap weighted or mean-
variance optimized portfolios. So while ignoringkiipremia information, Risk Control strategies séem
offer a better (i.e. more efficient) risk-returade-off.

What could be the mechanisms behind this “mirailperformance of Risk Control strategies ?
First of all, several studies tune down the appgavatperformance of risk-based strategies by @itig
back-tests, see section 6 and Goldberg & Mahmod#3R Secondly, when the underlying mechanism of
outperformance is an implicit exposureattomalies or factor premiasuch as value, size, low beta or
low (residual) volatility (as shown by Leote de Gaho, Lu & Moulin [2012]), then it makes much more
sense to consider these factor exposures expheitgn forming portfolioskFactor investing provides
much more efficient and effective ways to tailortéa exposures on the portfolio level than applyiisg
control techniques. After all, in the latter case dias to wait what factor exposures will percolate
bottom-up and reveal themselves in the portfolio.

In section 4 we saw that the MDP is the MSRPIi&ssets have identical Sharpe Ratios. When
we add the condition that correlations are unifaross the whole asset universe, then the ERCGIR is t
MSRP (see section 6). So one could use the argushestimation risk to justify the use of risk control
techniques : when we do not have information tommedully differentiate between assets (same risk-
return trade-offs and hence equal Sharpe Ratiassame correlations) the recipe is to treat aktssss
“substitutes”. But this kind of reasoning leadstoinconsistency, as Lee [2011] argues. Aftemaien
all correlations are smaller than unity, combiniwg assets A and B with equal Sharpe Ratios yi@hds
asset AB which has a higher Sharpe Ratio, thusiting) the assumption of equal Sharpe Ratios. Only
when all correlations are perfect (=1), the alli@kaatios can be equal — but this in turn impties all
assets arperfectsubstitutes (and hence are redundant).

Of course, we do not have to carry this reasotorte extreme. We do know that mean-variance
optimized portfolios are error-maximizing (Micha[i®89]) in the sense that their composition is very
sensitive to inputs (especially risk premia). Iis ttontext, the adagium “garbage in, garbage quplies
a fortiori. As outlined in section 2 and the Technical Appenithis estimation risk can be tackled by the
“Black-Litterman” [1992] approach : start from asRiControl portfolio, calculate the implied riskepmia
and next use your views and the confidence yoweplathese views to (slightly) adjust the optimiaat
inputs. This procedure results in a less extrendenaore robust portfolio. A Risk Control portfoliben
serves as atarting point in the portfolio formation process, and this istgulifferent from accepting a
Risk Control portfolio as a generator of superisk+adjusted returnger se

Coming to aconclusion we note that the true value of Risk Control sig#s is in analyzing and
specifying a preferred risk contribution profiletiain the portfolio. This should be part of any risk
budgeting process. Relevant questions are : Weéharrisk contributions of my portfolio componefts
Is my portfolio properly diversified or are theneyahot spots ?, How much confidence do you have in
risk premia views in order to shift risk contritrts within your portfolio ? Do you fully understatite
sources and contributions of risk and return ofrymartfolio ? And last but not least, risk is a tiul
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dimensional concept, so risk analyses should nigtfoous on volatility (standard deviation) butals
take downside risk and event risk in consideration.

Risk Control strategies and Risk Parity are no paaan reaping outperformance. Under realistic
and implementable back-test assumptions, theiresitpnance can be linked to overweighting asset
classes that in the rear view mirror have pairgth historical risk premia with low risk levels (asthe
case for bonds, e.g.) or to implicit exposuresattidr premia (anomalies). Focusing directly ondact
exposures provides a more explicit and more efficéad effective way to capture anomalies and egrni
factor premia.

Still, aside from their value in a risk budgetirgntext, Rick Control strategies provide a sensible
starting point in portfolio optimization when théseconsiderable uncertainty about the requiredt®p
To illustrate this point, we introduce our porttotiecision pyramid, see Figure 1.

Figure 1 : The portfolio decision pyramid

max Sharpe Ratio = full m_fp_rmahon on means,
volatilities & correlations
min var | Risk Parity = full information on
volatilities & correlations

1/c

= full information on
volatilities

= no clue ...

= Starting at the bottom of this inverted pyramide dvas no clue about risk and return inputs. The
only relevant recipe is then to diversify equaltyass portfolio constituents, yielding the 1/N
portfolio.

= When one can only put reliable trust in volatiliti@ portfolio can be formed by applying
volatility-weighting, yielding the IVP.

» When one has full risk information (reliable esttasaof both volatilities and correlations, so the
full covariance matrix is available), the MVP, thil®P or ERCP (Risk Parity portfolios) can be
constructed. Of course, one has to take into ad¢dbarrelative shortcomings of these portfolios
as noted in the relevant sections above.

» When one trusts all relevant inputs, i.e. ¢éixeantecovariance matrix and risk premia, then one
can build the MSRP.

* When one accepts risk inputs but at the same tokeoavliedges the estimation risk attached to
future risk premia, Risk Control portfolios canveeas a valid starting point in a Black-Litterman
[1992] procedure.
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11. Technical appendix

Asset (excess) returns
We start with an opportunity set Nfsecurities with returng; . Tildes indicate random variables. For

notational simplicity, we henceforth ignore theaimdext.
The risk free rate is denoted Iy, so the excess returns dfe-r; =rj .

Portfolio (excess) returns

We consider a portfolip defined by the investment Weigr{tw,}mp , satisfying full investment
Zi’ilwg =1 and no short positionsw, >0, i p.

The portfolio return is given bﬁp = Zmpwiﬁ . Likewise, the portfolio excess return is given: by
(13) Ty :ziWi Fi

In Excel this is easily computed by the functt @UMPRODUCT( [w], [r])" .

Marginal and component contributions to portfolio (excess) return
It follows from eq.(13) that the marginal contrilmurt of asset to portfolio excess return is given liy .

This is the increase in portfolio excess returnmtiee weight of assets increased marginally.
The component (i.e. full) contribution of ass&t portfolio excess return i f; . The sum of component

contributions to excess return equals the portfobxcess return, see eq.(13).

Portfolio risk premium
The average portfolio return over the risk free réthe portfolio risk premium, follows as :

(14) o =2, Wil -
The marginal and component contributions of aisgethe portfolio risk premium argg and W F;

respectively.

Portfolio variance
The portfolio variance is defined by the double sum

2 _
(15)  Op =22, W, T -
By definition of the correlatiorp; , the covariancer; can be expressed & = g, g 0; .

Since :
= the variance of a variable is the covariance daf Yhaable with itself, and
» the covariance is a linear operator (the covariafieeweighted sum is the weighted sum of
covariances),
we can write the variance of the portfolio excestsnmn as :

(16) var(pr) = cov(r~pf r"pf): cm(Ziwﬂf r,”pf) =D W cov(Fif o ) =D WG,
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where g is the covariance between the excess returnsseti @d the portfolig.

So although the portfolio variance is the quadrstim of weights and covariances, we can
express the portfolio variance as the weighted slithe covariances of each asset with the portfolio

2 _
Opt _Ziwiaipf'

Decomposing portfolio volatility
Dividing the previous expression by the portfolaatility we get :

17) ox =) W 'pf .
Indeed, it is not the decomposition of portfoliaiaace we are looking for, but tllecomposition of

portfolio volatility , asdefined by eq.(17). To see why this is true, nbé& the portfolio volatility is
linearly homogeneous in the portfolio weights : tiplying portfolio weights with a constaktmultiplies

the portfolio volatility with the same constdatEuler’s theorem then implies that,; =

00 00
where it can be checked from (16) tha{— Tipt . The term—"" is themarginal contribution of
W, pr W
Oips
asset to portfolio volatility. The termw;, —— is thecomponent contribution of asset to portfolio
Ot
volatility. The sum of all component contributions to volstiequals total portfolio volatility, see eq.(17).

The portfolio volatility is the cake and each coment contribution is a separate piece of that cake.
Dividing (17) by 0 ¢ yields the relative risk contributions of the asssumming to 100% :

(18) 1= w 'pf

To gain further msight into this decompositionnsmier the OLS regression of asseexcess
returns on the portfolio excess returns :

(19) rif =q +ﬁpr~pf +‘§i'

In this regression, the expected (or average) vafitiee disturbances is zero and the disturbance$he
portfolio excess return are uncorrelated, heEc(é‘i) = E(?pféi) =0. The regression slope or beta is

defined as :

Ot

(20) By=—Bl=p, 0
i o-pz)f i Upf

In Excel, this slope is calculated by the functi8hOPE( [r ], [r ] )” . Substituting the expression for

beta in (18) gives :

(2) 1= w4,

27



So ,Bip is the relative marginal contribution of asisai portfolio volatility (or the relative marginakk
contribution) :

aaf/Uf
(22) ﬁp:%
i

and w; ,8,p is the asset’s relative component contributiopddfolio volatility. So given the assets’ betas,

the decomposition of portfolio volatility is a peeof cake. Wherw; ,8,p is comparatively large, this

identifies a “hot spot” in the portfolio, or a pahof risk concentration, indicating that assét’'s
contribution to portfolio risk is large. Hence,ghgosition is likely to contribute heavily to arosé that
may be realized on the portfolio.

Sumarizing : {w;} defines money allocation ar{a/; [} defines risk allocation. To go from

money allocation to risk allocation, each investeeaight is multiplied with the corresponding beta
(note that the average value of beta is unity).

Portfolio optimality : maximize the Sharpe Ratio
From eq.(19) it follows that the expected excetigrneorrisk premium of asset is related to the
portfolio’s risk premium as :

(23) rn‘ =aq +ﬁpr_pf

Now consider the mean-variance optimal portfolds is the portfolio that maximizes the Sharpe &ati

-
(24) max SR, =--
Wi fiop O pt

The first-order conditions for optimality can beosim to imply the following relation between risk
premia and betas :

(25) Tn‘ = /Blpr_pf

In words : for the maximum Sharpe Ratio Portfoli@8RP, the risk premia of all constituents are
proportional to their betas. Considering eq.(23) implies that for all assets included in the NPSR,
the alphaa; equals zerog; =0 Li Jp*. To provide some intuition, note that for eacheass

comprised in a maximum Sharpe Ratio portfolio #lative marginal contribution to excess return must
equal the relative marginal contribution to risk; o

T
(26) — = ip
r
pf

This can be rephrased as requiring equal ratiosanfjinal return and risk contributiorfs :

* Note thatl /ﬁp is the Treynor [1966] ratio of risk-adjusted penfiance.
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If this does not hold, the Sharpe Ratio of thefpba can be improved by increasing the weighthef t
assets with higher contributions to return (or loa@ntributions to risk) and decreasing the weight

assets with lower contributions to return (or higbentributions to risk).
In other words, referring to eq.(23), when an ass#pha is positive@; >0, this asset shows

outperformance against the portfolio and the ShRqu@ of the portfolio can be increased by inciregas
the weight of this asset. Conversely, when an asalpha is negative; <0, this asset shows

underperformance and the portfolio’s Sharpe Ratiole increased by decreasing the weight of this
assetSummarizing : in a MSRP, high risk contribution should be mattheth high return contribution.
A more than proportionate return-to-risk contribuatindicates a positive “alpha”.

Two additional comments are in order. Firstly, yoay recognize in eq.(25) the infamous “Security
Market Line” or the Capital Asset Pricing Mode@APM . However, the results above applyatoy
maximum Sharpe Ratio portfolio, whereas the CAPIdliap to the equally infamous market portfolio
(the overall market cap weighted portfolio contagall assets) under the heroic equilibrium assignpt
that this portfolio is mean-variance efficient. ldenthe results presented above are completely@ene

Secondly, using the second definition of beta i§28] allows us to rewrite (25) as
Ti [ O = BTy [ Oy - Using the definition of the Sharpe Ratio, thigsdown to :

(28) SR=p, SR

In words : for any maximum Sharpe Ratio portfolay constituent’s the stand-alone Sharpe Ratio
equals the product of (i) its correlation with thpisrtfolio and (ii) the Sharpe Ratio of the poridoMhen
an asset’s Sharpe Ratio is larger (smaller), thigies that the asset’s alpha is positive (negativieis
also applies to assets not comprised in the p@tfathena; >0, or equivalentlySR > o, SR, the

Sharpe Ratio of the portfolio is increased by agdirat asset to the portfolio (amite versa

Reverse optimization : implied risk premia
In conventional mean-variance portfolio optimizatithe asset’s risk premia and their covarianceimat
are used to calculate the weights of the maximuarf@hRatio portfolio. In reverse portfolio
optimization, it is assumed that the portfolio ahtl actuallys the maximum Sharpe Ratio portfolio.
Together with the covariance matrix of excess regtinis allows us to derive the “imputed” risk piam
(see Sharpe [1974]). Using these implied risk pastofjether with the asset’s standard deviations;ame
then compute the implied Sharpe Ratios. Hencepgavearticular portfolio, these implied risk prer(ea
implied Sharpe Ratios) would make this portfolie thaximum Sharpe Ratio portfolio.

How do we derive these implied risk premia ? Actapthe portfolio risk premium as is, we

simply use the first-order condition for the MSRIReg.(25) together with the asset betas to conthate
implied risk premiumr; * as the product of the beta and the portfolio piskmium :
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(29) ¥ =BTy

The implied Sharpe Ratio readily follows &R* = § */ g .

Deriving implied risk premia is relevant when thés uncertainty about ex-ante risk premia. It is
well-known that composition of the MSRP is very siéiwe to the input risk premia; slight differendas
these inputs can result in very different (and gomes “unrealistic” or extreme and hence unaccdgjab
portfolios. At the same time, estimating ex-ans& premia is a very difficult task. Reverse optiatian
can help since the assets’ implied risk premiaesas/a sensible starting point. Depending on the
confidence placed in one’s ex-ante views, one e adjust the implied risk premia accordingly. ekft
this two-stage process, the resulting portfoliolaser to the original portfolio and less extreifieis two-
stage portfolio optimization process is proposedlack & Litterman [1992].
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