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Abstract 

Spurred by the increased interest in applying “risk control” techniques in an asset allocation context, we 

offer a practitioner’s review of techniques that have been newly proposed or revived from academic 

history. We discuss minimum variance, “1/N” or equal-weighting, maximum diversification, volatility 

weighting and volatility targeting – and especially “risk parity”, a concept that has become a real buzz 

word. We provide a taxonomy of risk control techniques. We discuss their main characteristics and their 

pluses and minuses and we compare them against each other and against the maximum Sharpe Ratio 

criterion. We illustrate their implications by means of an empirical example. We also highlight some 

important papers from the vast and still growing literature in this field. All in all, this note serves as a 

practical and critical guide to risk control strategies. It may help you to demystify risk control techniques, 

to appreciate both the “forest” and the “trees”, and to judge these techniques on their potential merits in 

practical investment applications. 

 

 

 

 
  



Electronic copy available at: http://ssrn.com/abstract=2259041

3 
 

Introduction 
Recently there has been increased interest in applying “risk control ” techniques in an asset allocation 

context. Some examples of techniques that has been newly proposed or revived from academic history are 

minimum variance, “1/N” or equal-weighting, maximum diversification, volatility weighting and 

volatility targeting – and especially “risk parity”, a concept that has become a real buzz word. 

 In this note we provide a taxonomy of risk control techniques. We discuss their main 

characteristics and their pluses and minuses, we compare them against each other and against the 

maximum Sharpe Ratio criterion – and we illustrate their implications by means of a single empirical 

example that we extend throughout the note. We also highlight some important papers from the vast and 

still growing literature in this field. All in all, this note serves as a practical and critical guide to risk 

control strategies that may help you to appreciate both the “forest” and the “trees” and to judge these 

techniques on their actual potential merits in practical investment applications.  

 The main question in risk control is : “does it work ?”  Do risk control techniques achieve the ex 

ante targeted risk balance or risk profile ? Can we avoid hot spots (pockets of risk concentration in a 

portfolio) and can we achieve diversification against losses ? Although these are natural questions to pose 

in the context of risk control, the current discussions on risk control extend its significance to offering 

opportunities to reap risk-adjusted outperformance. But why would ignoring the return dimension ex 

ante produce portfolios that are superior in terms of ex post risk-adjusted performance ?  

 Several studies indicate that the historical outperformance of risk control strategies can be linked 

to overweighting asset classes that in the rear view mirror  have paired high historical risk premia with 

low risk levels (as is the case for bonds, e.g.) or to implicit exposures to factor premia. However, focusing 

directly on factor exposures, as is done in factor investing, provides a much more efficient and effective 

way to capture factor premia. Still, focusing only on risk aspects when forming a portfolio is a perfectly 

sensible starting point when one has only low confidence in ex ante risk premia estimates. From the 

perspective of estimation risk, mis-estimation of risk premia has the greatest impact on portfolio 

composition and especially risk premia are notoriously hard to estimate ex ante. For example, suppose 

that ex ante you cannot meaningfully differentiate between all assets’ Sharpe Ratios (so you assume that 

all Sharpe Ratios are equal, implying that all risk premia are proportional to their volatilities), then 

constructing a Maximum Diversification portfolio gives the maximum Sharpe Ratio portfolio. When, in 

addition to equal Sharpe Ratios, you cannot meaningfully differentiate between asset correlations (so you 

also assume that all correlations are uniform), then applying Risk Parity gives the maximum Sharpe Ratio 

portfolio. So besides the risk dimension, also the potential relevance of risk control techniques in full-

fledged risk-return optimization is not to be under-estimated.  
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1. A taxonomy  

Risk control strategies serve to control the risk profile of an investment portfolio or investment strategy. 

Risk is often equated with standard deviation (of total return or differential return with respect to a 

benchmark), but most results carry over to downside risk measures such as portfolio loss or Value-at-

Risk. Apart from being techniques to analyze, monitor and change a portfolio’s risk profile, a large part of 

the literature has promoted risk control as a full-fledged investment criterion -- suggesting that controlling 

the risk dimension is sufficient to build a portfolio. We revisit this issue when discussing the various risk 

control strategies in more detail. We start off, however, with sketching a taxonomy of risk control 

strategies.  

 

The main skeleton of risk control strategies has a time series branch and a cross-section branch. 

 

A. Time series (TS) :   
The objective of risk control over time is to control the portfolio risk level over time. There are two 

closely related TS techniques : 

� volatility weighting over time : the exposure to (the risky part of) a portfolio is adjusted according 

to the level of forecasted volatility; 

� volatility targeting : this is volatility weighting with the specific goal to achieve a pre-specified 

level of portfolio volatility. 

When weighting or targeting a portfolio’s risk level over time, the composition of a portfolio’s risky part 

is not changed -- only the weights of the risky part and the risk free part are adjusted. 
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B. Cross-section (XS) :   
The objective of risk control in the cross-section is to control a portfolio’s risk profile at a given point in 

time. The focus is across assets : reweighting the portfolio constituents so as to obtain a desired risk 

profile. The main XS risk control strategies are :  

� 1/N, or the equally-weighted portfolio 

� minimum variance portfolio 

� maximum diversification portfolio  

� Risk Parity, that comes in two flavours : 

  � “Equal Risk Contribution” (ERC) or “full” risk parity 

  � “Inverse Volatility” (IV) or volatility weighting in cross-section. 

 

Finally, we escape from a risk-only perspective and consider the Maximum Sharpe Ratio portfolio. 

 

Before discussing the above techniques in more detail, we outline our empirical example that we’ll use to 

illustrate these techniques and their implications. 

 

 

2. The empirical example and preliminaries 
We consider monthly data over the 10Y period Jun 2002 – May 2012 (120 months) for a selection of US 

assets classes. See Table 1. 

 

Table 1 : overview of assets and their market cap weight.  

Assets : Abbrev : Market Cap Index : 

Risk free rate of return     

Equities Eq 45% 

Aggregate Treasuries Tsies 30% 

Corporate Investment Grade IG 20% 

Corporate High Yield    HY 5% 

 

Data sources : 

� The risk free return comes from the Ibbotson “Stocks, Bills, Bonds and Inflation” database.  

� Equities is the market factor from Kenneth French’s database.1  

� The fixed income series are taken from Barclays Live.2 

� All returns are in USD. 

The composition of the market capitalization weighted portfolio “Mkt Cap”  is estimated as per 2012Q1.3 

“EqWtd” is the equally-weighted portfolio. The descriptive statistics are given in Table 2 on the next 

page.  

                                                             
1 The Ibbotson risk free rate and the market factor can be downloaded from 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
2 Download from https://live.barcap.com/ . 
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Table 2 : Statistics of US Excess Returns (p.a.) over the risk free rate (Jun 2002 - May 2012). 

% Equities Tsies IG HY Mkt Cap EqWtd 

Return statistics :             

avge p.a. 4.83 3.93 4.85 7.65 4.71 5.31 

stdev p.a. 16.75 4.93 6.42 11.27 8.24 7.30 

Sharpe Ratio 0.29 0.80 0.76 0.68 0.57 0.73 

Correlations :             

Equities   -0.34 0.30 0.74 0.95 0.87 

Tsies     0.52 -0.22 -0.06 0.00 

IG       0.59 0.56 0.71 

HY         0.79 0.90 

Mkt Cap           0.46 

 

Observations : 

� Over this historical period, fixed income assets were the real winners. This is not surprising given 

the substantial tail wind from decreasing interest rates. Especially Tsies paired a substantial 

average return with a relatively low level of risk. 

� Equities showed the highest volatility, but viewing the Sharpe Ratio this was not matched by a 

proportionally higher risk premium. 

� Equities and Tsies were negatively correlated, providing hedge opportunities (see the small 

negative correlation between Tsies and the market cap portfolio). 

� The highest correlation is between Equities and HY, pointing at a high correlation between equity 

risk and credit risk. Credit risk is dominant in HY and the negative correlation between interest 

rates and credit spreads manifests itself in the negative correlation between Tsies and HY. 

 

Money allocation versus risk allocation 
The money allocation in the market cap portfolio is given in Table 1. 

For the risk allocation within the market cap portfolio, we compute the OLS regression slope or beta of 

the assets against the market cap portfolio. It can be shown that this beta represents the relative marginal 

contribution of the corresponding asset to the overall portfolio risk (for details, see the Technical 

Appendix). The component risk contribution is given by the product of the investment weight and the 

beta. Hence, the betas can be interpreted as the adjustment factors to transform money allocation into risk 

allocation (note that the weighted average value of beta is unity). The risk allocation within the market 

cap portfolio is given in Table 3. 

  
                                                                                                                                                                                                    
3 Sources are (1) Securities Industry and Financial Markets Association (SIFMA), US Bond Market Outstanding, 
download from http://www.sifma.org/research/statistics.aspx, (2)WorldBank, year-end market capitalization of 
listed companies by country, download from http://data.worldbank.org/indicator/CM.MKT.LCAP.CD  and (3) 
Barclays Live (for the relative IG and HY capitalizations). 
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Table 3 : Risk attribution with respect to Mkt Cap portfolio.  

  Eq Tsies USIG USHY sum 

weight 45% 30% 20% 5%   

beta 1.93 -0.04 0.44 1.08   

% risk contribution 87% -1% 9% 5% 100% 

  

From Table 3 we see a nasty surprise : the market cap portfolio appears to be a properly diversified 

portfolio but in reality almost 90% of the risk within that portfolio is due to equities. (This was already 

forewarned by the high correlation between equities and the market cap portfolio as shown in Table 2.) 

The same finding is reported for conventional 60/40 equity-bond portfolios in general, and for typical 

“Yale” portfolios (were commodities and/or alternatives are added to main holdings of equities and 

bonds).  

 Although we focus on volatility as the risk measure, the same pattern arises when we consider the 

average of the 6 largest monthly losses against the risk free rate on the market cap portfolio over this 

period, see Table 4. Equities also contributed by far the most to the realized losses (where the exact 87% 

contribution of Equities is a coincidence with Table 3).    

 

Table 4 : Absolute and % contribution of assets to average of 6  

largest losses on the market cap portfolio (in terms of excess returns). 

Cap Index Eq Tsies USIG USHY 

-5.56 -4.84 0.00 -0.50 -0.21 

100% 87% 0% 9% 4% 

 

The extremely large contribution of equities to (downside) risk within portfolios that seem only 

moderately geared towards equities provided the impetus to the research into risk control strategies. In the 

remainder of this note, we use this empirical example to illustrate various risk control strategies. 

 

Implied risk premia and the implied Sharpe Ratios 
There is one additional perspective we’d like to highlight – a perspective that is helpful in evaluating risk 

control strategies vis à vis the maximum Sharpe Ratio portfolio. For each of the portfolios that we discuss, 

we present the implied risk premia and the implied Sharpe Ratios of the individual assets. Instead of 

using actual risk premia and the variance-covariance matrix to calculate the maximum Sharpe Ratio 

portfolio (MSRP), we assume that the portfolio at hand actually is the MSRP. Together with the variance-

covariance matrix of excess returns this allows us to derive the “imputed” risk premia (pioneered by 

Sharpe [1974]); together with the actual (historical) asset standard deviations, we can then compute the 

implied Sharpe Ratios. Hence, given a particular portfolio, these implied risk premia (or implied Sharpe 

Ratios) would make this portfolio the maximum Sharpe Ratio portfolio.  

The process of calculating implied risk premia is called “reverse portfolio optimization” ; for 

details, see the Technical Appendix. Reverse optimization is relevant when there is uncertainty about ex-

ante risk premia. After all, since the MSRP is the tangency portfolio to the mean-variance efficient 
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frontier without including risk free borrowing and lending, this portfolio is very sensitive to the input risk 

premia. Slight differences in these inputs can result in very different (and sometimes “unrealistic” or 

extreme and hence unacceptable) portfolios. At the same time, estimating ex-ante risk premia is a very 

difficult task. Reverse optimization can help since the assets’ implied risk premia serve as a sensible 

starting point. Depending on the confidence placed in one’s ex-ante views, one can next adjust the 

implied risk premia accordingly. After this two-stage process, the resulting portfolio is closer to the 

original portfolio and less extreme. This two-stage portfolio optimization process is proposed by Black & 

Litterman [1992].  

 

Table 5 : Implied risk premia and implied Sharpe Ratios within market cap portfolio   

  Eq Tsies USIG USHY 

implied risk premium 9.09 -0.18 2.06 5.11 

implied Sharpe Ratio 0.54 -0.04 0.32 0.45 

 

Table 5 presents the implied risk premia and the implied Sharpe Ratios of the market cap 

portfolio. For Equities, the implied risk premium is about twice as large as the historical risk premium. 

For IG, the implied risk premium is less than half of the historical risk premium. So when the market cap 

portfolio would be the MSRP, Equities would have to offer a risk premium of 9% and IG of 2%. 

Conversely, when we would feel confident in extending the historical risk premia to the future, this 

implies that we should increase the weight of IG and lower the weight of Equities in order to increase the 

Sharpe Ratio of the market cap portfolio. For Tsies, the implied risk premium (and hence the implied 

Sharpe Ratio) is even slightly negative. This reflects the role of Tsies as a hedge in the market cap 

portfolio. Because of the negative correlation of Tsies with Equities (and HY), their 30% weight in the 

market cap portfolio would be justified even when their risk premium would be zero.   

 
Notation  
We use fairly conventional notation. We denote individual asset standard deviations or volatilities by iσ . 

The portfolio volatility is pσ . The beta of asset i with respect to portfolio p is ipβ  and its correlation with 

the portfolio is denoted as ipρ . The portfolio weight of asset i is denoted as iw . Where deemed 

necessary, technical details are mentioned in the main text. For the quant minded, the Technical Appendix 

contains a general background and additional derivations. 
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3. 1/N or equal-weighting 
Main reference : 

� DeMiguel, Garlappi & Uppal [2009] “Optimal Versus Naive Diversification: How Inefficient is 

the 1/N Portfolio Strategy?” 

Recipe : 
� In equally-weighted portfolios, each asset is assigned a weight of 1/N.  

In our example, each asset class gets a weight of 25% in the portfolio. Since we maintain these 

weights over time, the 1/N portfolio is rebalanced monthly. 

Characteristics : 
� 1/N avoids concentrated positions -- in terms of money allocation ! 

� Within equities, 1/N implies an exposure to the small-cap anomaly. The market cap portfolio is 

tilted towards large cap stocks. The 1/N portfolio is tilted towards small cap stocks and will hence 

capture a size premium. 

� 1/N implies a disciplined and periodical rebalancing of positions. By definition, the market cap 

portfolio is a buy-and-hold portfolio. The 1/N portfolio, in contrast, implies a “volatility 

pumping” effect : in order to maintain the 1/N allocation, one has to buy (sell) out- (under-) 

performing assets. This is effectively a “buy low, sell high” strategy, which profits from reversals. 

Depending on the revision period, the rebalancing process implies portfolio turnover with the 

associated transaction cost and exposure to potential illiquidity (since even the smallest market 

cap assets get a weight of 1/N). 

� Estimation risk :  in Bayesian terms, the 1/N portfolio is the “uninformed prior” : the naively 

diversified portfolio that is optimal when one has no information to discriminate between the 

attractiveness of assets. 

� When all assets have the same volatility and when all pairwise correlations are the same, then the 

1/N portfolio is the MVP . In this case, the MVP also coincides with the ERCP. See below. 

� 1/N indices are published by MSCI and S&P, among others. 

 

From Table 2 we see that the 1/N portfolio has a higher historical risk premium and a lower risk than the 

market cap portfolio. This stems mainly from underweighting Equities (with a lower Sharpe Ratio) and 

overweighting HY (with a higher Sharpe Ratio).  

 

Table 6 shows the 1/N portfolio statistics. It clearly shows that equal money allocation is very different 

from equal risk contributions. Notably Tsies act as a strong diversifier (negative correlation with Equities 

and HY) and show (virtually) zero risk contribution. Still, Equity risk dominates in the 1/N portfolio, 

accounting for 50% of the portfolio volatility. For Equities, the implied risk premium is 10.56% p.a. 

(which given historical volatility implies a Sharpe Ratio of 0.63). When one believes that the ex ante 

equity risk premium is below 10.56%, the weight of Equities should be lowered in order to improve the 

risk-adjusted portfolio performance. When one believes that the ex ante bond risk premium is above 2 bps 

p.a., the weight of Tsies should be increased. Equivalent reasoning applies to IG and HY. 
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Table 6 : Risk attribution with respect to 1/N portfolio, and implied risk premia and SRs. 

  Eq Tsies IG HY sum 

weight 25% 25% 25% 25%   

beta 1.99 0.00 0.62 1.39   

% risk contribution 50% 0% 16% 35% 100% 

implied risk premium 10.56 0.02 3.30 7.38   

implied Sharpe Ratio 0.63 0.00 0.51 0.66   

 

 

 
4. Maximum Diversification Portfolio MDP 

Main reference : 
� The MDP is proposed by Choueifaty & Coignard [2008] “Toward Maximum Diversification” 

Recipe : 
� The weights of the MDP are obtained by maximizing the “diversification ratio”, which is defined 

as the ratio of weighted volatilities and portfolio volatility : 

 

 (1) 
{ }
max i ii

p
w

wσ
σ

∑
 

 

For obtaining insight into this ratio, note that the portfolio volatility can be written as the 

weighted sum of the product of each asset’s individual volatility and its correlation with the 

portfolio. Hence, we can rewrite the diversification ratio as : 

 

(2) 
{ }
max i ii

i ii ip
w

w

w

σ
σ ρ

∑
∑

 

 

This expression reveals that the diversification ratio compares (i) the portfolio volatility when 

ignoring correlations in the numerator, with (ii) the actual portfolio volatility when taking into 

account correlation (and hence diversification) in the denominator. Imperfect (<1) correlations 

increase the diversification ratio above unity. 

Characteristics : 
� It can be shown that for the MDP it holds that (see Choueifaty & Coignard [2008]) : 

 

(3) 
1 1p p

i i j jw w

σ σ
σ σ

∂ ∂
=

∂ ∂
 

 
where /p iwσ∂ ∂  is the marginal contribution of asset i to portfolio volatility. By definition, 

within the global Minimum Variance Portfolio, all assets’ marginal risk contributions are equal, 



11 
 

see section 5. It follows that for equal volatilities, σ σ=i j , the MPD coincides with the global 

MVP . 
� From (3) it also follows that when risk premia { }ifr  are proportional to volatilities σ{ }i , thus 

implying that all assets have the same Sharpe Ratio, then the MDP is the MSRP. After all, in the 

MSRP the assets’ marginal contributions to the portfolio risk premium are proportional to the 

assets' marginal contributions to portfolio volatility, implying : 

 

(4) 
1 1p p

if i jf jr w r w

σ σ∂ ∂
=

∂ ∂
 if jf

ip jp

r r

β β
⇔ =  

 

(see section 8). 

� Choueifaty & Coignard [2008] also show that each asset has the same correlation with the MDP. 

� FTSE publishes the FTSE TOBAM Maximum Diversification Index Series. 

Evaluation : 
� Why should one maximize this specific diversification ratio ? After all, there are many 

definitions of “diversified” ! 

�  The diversification ratio is a differential  diversification measure. It applies with respect to the 

specific portfolio at hand. It is no absolute diversification measure from which we can read the 

degree of diversification; we cannot compare the diversification ratios of two different portfolios 

to infer which portfolio is more diversified than the other. 

� The MDP is not unique and may be very concentrated in weights (money allocation) or in risk 

and loss contributions (risk allocations).  Indeed, in our example IG carries zero weight in the 

MDP, see Table 7. 

 

Table 7 : Risk attribution with respect to MDP, and implied risk premia and SRs. 

  Eq Tsies IG HY sum 

weight 16% 73% 0% 11%   

beta 2.22 0.65 1.20 1.49   

% risk contribution 36% 48% 0% 16% 100% 

implied risk 

premium 9.94 2.93 5.39 6.68   

implied Sharpe 

Ratio 0.59 0.59 0.84 0.59   

 

Tsies have the highest weight in the MDP; the money allocation of 73% here implies that Tsies 

account for about 50% of the portfolio risk. This can hardly be termed a “diversified portfolio”… 

� Table 7 also shows that the implied Sharpe Ratios of the three portfolio components equals 0.59. 

This confirms that when Sharpe Ratios of the portfolio constituents are the same, then the MDP 
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is the MSRP. Note that this only applies to assets comprised in the MDP; by construction, the 

composition of the MDP does not depend on risk premia or Sharpe Ratios. 

� The portfolio statistics are depicted in Table 8. For the historical inputs, the MDP beats the 

market cap and 1/N portfolios in risk-adjusted performance. This is due to the large overweight of 

Tsies which over the past decade showed the highest Sharpe Ratio. 

 

Table 8 : Comparative portfolio statistics. 

Portfolio stats 

Cap 

Wtd 1/N MDP 

avge 4.71 5.31 4.47 

stdev 8.24 7.30 4.26 

SR 0.57 0.73 1.05 

 

� Finally, note that we use the full historical sample to calculate the weights of the MDP. In 

practical applications, one would use trailing historical windows (avoiding a look-ahead bias) to 

re-calculate the weights. In this way, the out-of-sample properties of the MDP can be evaluated.   

 

 

5. Minimum Variance Portfolio MVP 
Main references : 

� Haugen & Baker [1991] “The Efficient Market Inefficiency of Capitalization-Weighted Stock 

Portfolios”, 

show that market cap weighted portfolios are inefficient (sub-optimal) when there are market 

frictions and highlight the high relative performance of low volatility portfolios   

� Clarke, DeSilva & Thorley [2006] “Minimum Variance Portfolios in the US Equity Market”, 

extend Haugen & Baker’s empirical research  

� Blitz & van Vliet [2007] “The Volatility Effect : Lower Risk Without Lower Return”, 

revive the interest in the low volatility anomaly and provide possible explanations (behavioural 

biases, leverage restrictions, and delegated portfolio management and benchmarking)  

� Scherer [2011] “A Note on the Returns From Minimum Variance Investing”, 

links the returns on the MVP to factor premia 

Recipe : 
� Choose the portfolio weights to minimize portfolio variance : 

 

(5) 2

{ }
max p i j i j ij

i j
w

w wσ σ σ ρ=∑∑  

� The optimal portfolio is characterized by equal marginal contributions to portfolio risk : 

p p

i jw w

σ σ∂ ∂
=

∂ ∂
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Characteristics : 

� Note that marginal risk contributions are given by ,p i p
ip p

i pw

σ σ
β σ

σ
∂

= = ⋅
∂

, so all asset betas with 

respect to the MVP are identical. 

� Since an asset’s risk contribution equals p
i i

i

w w
w

σ∂
∂
∼ , risk contribution is proportional to the 

investment weight, so risk allocation equals money allocation. 

� When all assets have the same volatility and when all pairwise correlations are the same, then the 

MVP is the 1/N portfolio. After all : it pays to diversify over the assets but in the portfolio 

context, all assets are perfect substitutes.  
� the MVP is the MSRP when all assets have the same risk premium, =ifr r  (implying that all 

Sharpe Ratios iSR are proportional to σ1/ i ). After all, in that case we have (cf. eq.(4)) : 

 

(6) 
1 1p p

i jr w r w

σ σ∂ ∂
=

∂ ∂
 

Evaluation : 
� The MVP favours low volatility assets and low beta assets and hence benefits from the low 

volatility anomaly. The MSCI Minimum Variance Index  and the S&P Low Volatility Index 

are examples of low risk portfolios that are designed to benefit from this anomaly. 

For more information on the low volatility anomaly, see Blitz & van Vliet [2007].  

� Several studies have documented that MVPs also pick up other priced anomalies. Clarke, DeSilva 

& Thorley [2006] find that, in general, the MVP has a substantially higher value (B/P) exposure 

than the market (since value stocks tend to have low volatilities), which explains at least part of 

its higher average realized return. Scherer [2011] shows that the MVP loads significantly on the 

Fama-French factors (large size and high value) but also finds that MVPs have a negative beta 

bias (favour low beta assets) and favour assets with low residual volatility . The latter effects 

crowd out the Fama-French factors in the sense that low beta and low residual volatility alone can 

explain more of the variation in the MVP’s excess returns than the Fama-French factors. This 

leads Scherer to conclude that low beta and low residual volatility is a more efficient and 

effective way to capture the low volatility anomaly than minimum variance.  

� When time passes and the MVP is re-optimized, one will need to apply constraints on turn-over 

in order to mitigate transactions costs. However, turnover constraints make the MVP a path 

dependent strategy. 

� The MVP is a concentrated portfolio. Assets with low volatility and/or low correlations with 

other assets will carry a large weight. Conversely, assets with high volatility and/or high 

correlations with other assets will carry a small or even negative weight; when excluding short 

positions, these assets will not appear in the MVP. This is illustrated in Table 9 : IG is not 

included in the long-only MVP. 
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Table 9 : Risk attribution with respect to MVP, and implied risk premia and SRs. 

  Eq Tsies IG HY sum 

weight 8% 80% 0% 12%   

beta 1.00 1.00 1.31 1.00   

% risk contribution 8% 80% 0% 12% 100% 

implied risk 

premium 4.44 4.44 5.84 4.44   

implied Sharpe Ratio 0.27 0.90 0.91 0.39   

 

Table 9 confirms that when the assets comprised in the MVP have identical risk premia, then 

the MVP is the MSRP. Note again that this only applies to assets that are comprised in the MVP 

in the first place. 

� Table 9 also confirms marginal risk contributions of MVP constituents are identical (all betas 

equal unity) and that money allocation equals risk allocation in a MVP. 

� Table 10 shows the portfolio statistics. The MVP risk premium is about the same as the MDP’s 

risk premium, but its volatility is lower, thus yielding a higher Sharpe Ratio. This lower volatility 

is achieved by overweighting Tsies at 80%, supplemented by positions in Equities and HY which 

are negatively correlated with Tsies. 

 

Table 10 : Comparative portfolio statistics. 

Cap Wtd 1/N MDP MVP 

avge 4.71 5.31 4.47 4.44 

stdev 8.24 7.30 4.26 3.99 

SR 0.57 0.73 1.05 1.11 

 

� Last but not least, the quadratic optimization underlying the MVP has the property of being “error 

maximizing”, see Michaud [1989]. This implies that the composition of the MVP is very sensitive 

to slight differences in variances and covariances. When (part of) these differences are not real 

but due to sampling error, this will propagate into portfolio composition. 

� Again, note that we use the full historical sample to calculate the weights of the MVP.  

 

  
6. Equal Risk Contribution portfolio ERCP – full Ri sk Parity 

Main references : 
� Qian [2005], “Risk Parity Portfolios : Efficient Portfolios Through True Diversification”, 

this is the seminal paper on risk parity 

� Qian [2006], “On the Financial Interpretation of Risk Contribution; Risk Budgets Do Add Up”, 

this paper is on the linear decomposition of risk 
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� Hallerbach [2003], “Decomposing Portfolio Value-at-Risk, A General Analysis”, 

extends risk decomposition to Value-at-Risk and shows how to decompose risk in parametric and 

non-parametric (simulation) settings   

� Maillard ea  [2010],”The Properties of Equally Weighted Risk Contribution Portfolios”, 

discusses the theoretical properties of risk parity portfolios and provides a comparison with other 

risk control techniques  

� Lee [2011] “Risk-Based Asset Allocation : A New Answer to an Old Question ?”, 

provides a good discussion of risk control techniques, with especially a critical evaluation of Risk 

Parity  (see also section 10) 

� Asness, Frazzini & Pedersen [2012]  “Leverage Aversion and Risk Parity”,  

document the empirical outperformance of a risk parity strategy over a market cap weighted 

portfolio and refer to the leverage aversion effect to explain this outperformance   

� Anderson, Bianchi & Goldberg [2012] “Will My Risk Parity Strategy Outperform?”,  

critically review and refute the empirical evidence provided by Asness, Frazzini & Pedersen 

[2012]   

Recipe : 
� The ERCP rests on the premise that no asset should dominate the portfolio risk profile. 

Consequently, all assets’ contributions to portfolio risk are equalized. The contribution of an asset 

to portfolio risk equals its investment weight multiplied with its marginal contribution to portfolio 

risk. An asset’s marginal contribution to portfolio risk equals its beta with respect to the portfolio. 

Hence, the weights of the ERCP satisfy : 

 

(7) p p
i j i ip j jp

i j

w w w w
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σ σ
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Hence, the weights in the ERCP are proportional to the inverse of the corresponding betas :  

 

(8) 
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~ERC
i

ip

w
β

 

� Since by definition the contribution of each asset to portfolio risk must equal 1/N, the 

composition of the ERCP can easily be calculated in Excel by requiring that for each asset 
1/i ipw Nβ = . 

Characteristics : 
� The ERCP is the 1/N portfolio when all assets have the same volatility σ  and when all pairwise 

correlations are uniform at ρ . After all, in that case eq.(7) implies that i jw wσ ρ σ ρ= , which 

is satisfied for = = 1/i jw w N . 

� The ERCP is the MDP when all correlations are uniform : ip jpρ ρ= . 

� The ERCP is the MVP  when correlations are uniform (pairwise equal) ànd at their theoretically 
lowest level of 1/ ( 1)Nρ = − − . See Maillard ea  [2010]. 
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� The ERCP is the MSRP when all correlations are uniform ànd all assets have the same Sharpe 

Ratio.  

See Maillard ea  [2010]. 

� When there are only two assets, the ERCP equals the IVP (see section 7). 

Evaluation : 
� “Risk” is usually equated with standard deviation of return (volatility), but in principle any other 

risk measure can be chosen as long as the risk measure is linearly homogeneous in the portfolio 

weights. This means that when multiplying all investment weights with a constant c, the risk 

measure is also multiplied by the same constant c. Portfolio loss, Value-at-Risk (VaR) and 

Conditional VaR (or Expected Tail Loss) satisfy this property. See Hallerbach [2003], e.g. 

� Since we can rewrite beta as the product of (1) the correlation with the portfolio and (2) the 
quotient of the asset and portfolio volatility,  so /ip ip if pfβ ρ σ σ= , eq.(8) implies that ERCPs 

favour assets with low levels of volatility and low correlations with other assets (hence : 

“portfolio diversifiers” ) 

� The portfolio statistics are depicted in Table 11 :  

 

Table 11 : Comparative portfolio statistics. 

  

Cap 

Wtd 1/N MDP MVP ERCP (4) ERCP (3) 

avge 4.71 5.31 4.47 4.44 4.79 4.47 

stdev 8.24 7.30 4.26 3.99 4.77 4.60 

SR 0.57 0.73 1.05 1.11 1.00 0.97 

 

ERCP(4) is on the basis of the 4 original assets, in ERCP(3), IG and HY are combined into one 

asset class. The table shows that the ERCPs had about half the risk of the market cap portfolio at 

comparable levels of average return, yielding almost double Sharpe Ratios. This is due to 

overweighting Tsies and underweighting Equities (see Table 12). 

� The ERCP is perfectly diversified in terms of risk (loss) contributions. 

� The ERCP is less concentrated than the MVP and the MDP, and it contains all N assets. 

� The ERCP is more robust, i.e. less error maximizing, than the MVP. The intuitive reason is that 

the MVP is found by means of optimization, i.e. by equating marginal risk contributions, 

whereas the ERCP is found by a restriction on the product of weights and marginal risk 

contributions. 
� It can be shown that 1/MVP ERC Nσ σ σ≤ ≤ , where the MVP is error maximizing and the 1/N 

portfolio focuses on money allocation, not risk allocation. Hence, the ex-ante volatility of the 

ERCP is between the lowest level (from the MVP) and the volatility of the naively diversified 

1/N portfolio.  

See Maillard ea  [2010] for details. 

� Calculating the ERCP is a daunting task when the number of assets is very large. A solution 

would be to resort to a hierarchical procedure in which risk parity is first applied within groups 
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(sectors, countries,…) and next across groups. However, pre-grouping directly influences the 

ERCP, see below. 

� Table 12, Panel A, shows the composition of the ERCP. Note the large 52% weight of Tsies, this 

is due to both their low volatility and their negative correlation with Equities and HY. The high 

volatility of Equities implies a lower than 25% weight. The implied risk premia and Sharpe 

Ratios can be interpreted as before. 

 

Table 12 : Risk attribution with respect to ERCP, and implied risk premia and SRs. 

Panel A : ERC (4) Eq Tsies IG HY sum 

weight 12% 52% 21% 15%   

beta 2.06 0.48 1.21 1.68   

% risk contribution 25% 25% 25% 25% 100% 

implied risk premium 9.86 2.29 5.77 8.02   

implied Sharpe Ratio 0.59 0.46 0.90 0.71   

Panel B : ERC (3) Eq Tsies IG+HY   

weight 16% 57% 26%   

beta 2.06 0.58 1.26   

% risk contribution 33% 33% 33% 100% 

implied risk premium 9.19 2.59 5.64   

implied Sharpe Ratio 0.55 0.53 0.84   

 

� The composition of the ERCP depends on choosing the number of assets N and hence on any 

pre-grouping of assets (see Lee [2011]). For example, when aggregating IG and HY into a single 

credits sub-portfolio, ERCP(3), the risk allocations shift from 25% to 33%; see Table 12, Panel B. 

In Table 11 we see that, in this particular example, combining IG and HY has almost no historical 

performance consequences.   

� Leverage is needed to boost the low risk and return of RP in order to match any risk budgets or 

return targets. 

� Again, note that we use the full historical sample to calculate the weights of the ERCP. In 

practice, one would sequentially derive ERCPs over rolling data windows. In back-tests, one 

should avoid any look-ahead biases when implementing leverage and rebalancing. 

� In their empirical study, Asness, Frazzini & Pedersen [2012] illustrate the historical 

outperformance of ERCPs (or IVPs since they consider only two asset classes, US equity and 

bonds) over a market cap weighted portfolio over the period 1926-2010. As an explanation they 

raise leverage aversion as the driving force behind the performance of ERCPs. This mechanism 

works as follows. (Some) investors are averse (or restricted) to applying leverage and they bid up 

the prices of high risk / high beta assets in order to fill their risk budget. As a consequence, the 

risk premium offered on high risk assets is reduced. Low beta (risk) assets offer higher risk-

adjusted returns, and high beta (risk) assets offer lower risk-adjusted returns. A less than average 

leverage-averse / -constrained investor can benefit by overweighting low beta (risk) assets and 
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underweighting high beta (risk) assets. Leverage is applied to fill the risk budget or to attain a 

targeted risk level. In addition to leverage aversion, the “lottery ticket effect”  may be at work, in 

which investors with a propensity to “gamble” overbid for high risk assets, thus reducing their 

risk premium. Finally, delegated portfolio management, centered around benchmarked portfolios, 

implies that low (high) risk stocks have large (small) tracking error. As argued by Blitz & van 

Vliet [2007], this introduces the low volatility anomaly, implying a flat or negative risk-return 

trade-off. Since low volatility assets outperform and ERCPs overweight low risk assets, this may 

explain their outperformance. 

� Anderson, Bianchi & Goldberg [2012] raise some serious back test issues in the research by 

Asness, Frazzini & Pedersen [2012]. First of all, they note that the outperformance of the ERCP 

is not uniform over sub-periods. Secondly, they show that market frictions (borrowing costs and 

turn-over induced trading costs) eat into performance. Thirdly, they argue that Asness, Frazzini & 

Pedersen’s [2012] risk parity strategy is not an investable strategy since it uses unconditional 

leverage : they use a constant scale factor, computed from the full 1926-2010 period, to match the 

volatilities of the levered risk parity strategy and the market cap portfolio. Hence, their empirical 

set-up suffers from a look-ahead bias. Anderson, Bianchi & Goldberg [2012], in contrast, use 

conditional leverage where at each rebalancing date the volatility scale factor is derived from past 

3Y trailing windows. They show that implementing conditional leverage halves the cumulative 

total return of the risk parity strategy as reported by Asness, Frazzini & Pedersen [2012]. 

Realistic borrowing costs and trading costs further reduce the cumulative total return of the risk 

parity strategy. In all, these realistic adjustments make the performance difference between the 

risk parity strategy and the market cap portfolio disappear… 

 

 

7. Inverse Volatility Portfolio IVP – naive Risk Pa rity 
Main reference : 

� Maillard ea  [2010],”The Properties of Equally Weighted Risk Contribution Portfolios”, 

they discuss IVP next to ERCP, although volatility weighting (or “normalization”) has been 

applied for long by practitioners to improve cross-asset comparability and to reduce portfolio or 

strategy risk. (This may be inspired by statistics, where inverse variance weighting is used to 

minimize the variance of the sum of two or more random variables.) 

Recipe : 
� Set each weight proportional to the stand-alone volatility of the corresponding asset and 

normalize so that the weights sum to unity. This volatility-weighting in the cross-section yields :   

(9) 
1

1i

j

i

j

w
σ

σ
=
∑

 

� The IVP is equivalent to the ERCP when there are only two assets. (In the two-asset case, the 

correlation is irrelevant.)  
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� The IVP is equivalent to the ERCP when correlations are uniform (or zero). Neglecting 

correlation information makes IVP a “naïve” risk parity strategy. 

Characteristics : 
� When correlations are uniform (or zero), the IVP is the ECRP. (In that case, all comments made 

for ERCPs also apply for IVPs). When everything else is equal, then compared to the IVP, the 

ERCP will be tilted towards low correlated assets. 

� When correlations ànd volatilities are uniform, the IVP is the 1/N portfolio.  

� The S&P Low Volatility Index is composed of the 100 stocks from the S&P500 Index with the 

lowest (252 days past) volatility, where each stock is weighted with its inverse volatility. 

� The MSCI Risk Weighted Indices use inverse variance (and not volatility) to weight 

constituents. Inverse variance weighting yields the MVP  when all correlations are uniform (or 

zero). 

Evaluation : 
� Except for the impact of (markedly different) correlations, IVPs are quite similar to ERCPs. As 

shown in Table 13, the IVP assigns more weight to IG (was 21%) and less weight to Tsies (was 

52%). The latter can be explained because the IVP ignores the negative correlation with Equities 

and HY. This shift in weights translates into less balanced risk contributions. 

 

Table 13 : Risk attribution with respect to IVP, and implied risk premia and SRs. 

  Eq Tsies IG HY sum 

weight 12% 40% 31% 18%   

beta 2.01 0.34 1.09 1.67   

% risk contribution 24% 13% 34% 29% 100% 

implied risk premium 9.99 1.67 5.44 8.32   

implied Sharpe Ratio 0.60 0.34 0.85 0.74   

 

� Table 14 shows that the IVP has somewhat higher volatility and average return than the ERCP. 

This combined effect is due to the lower weight of Tsies (which have the lowest average return, 

the lowest volatility, and negative correlations with Equities and HY). 

 

Table 14 : Comparative portfolio statistics. 

  

Cap 

Wtd 1/N MDP MVP ERCP IVP 

avge 4.71 5.31 4.47 4.44 4.79 4.97 

stdev 8.24 7.30 4.26 3.99 4.77 5.28 

SR 0.57 0.73 1.05 1.11 1.00 0.94 
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8. Maximum Sharpe Ratio Portfolio MSRP 
Main references : 

� For a discussion of the Sharpe ratio, see Sharpe [1994]. 

� For mean-variance portfolio theory and for finding the MSRP, we refer to standard investment 

texts. 

Recipe : 
� Choose the portfolio weights to maximize the Sharpe Ratio : 

 

(10) 
{ }
max pf

p
pf

w

r
SR

σ
=  

 

This can be accomplished by quadratic optimization, or in Excel by first defining an extra column 

with portfolio returns given an array of weights and next to maximize the Sharpe Ratio of this 

portfolio returns series. 

� Hence, in the familiar excess return-risk graph, we should maximize the slope of the ray 

emanating from the origin, as shown in the figure below : 

 

 
Characteristics : 

� Within the MSRP, the ratios of marginal contributions to risk and return are constant. Since an 
asset’s  marginal contribution to the portfolio risk premium equals the asset’s risk premium, ifr , 

and since this asset’s marginal contribution to portfolio risk is its beta, ipβ , we require : 

/ /if ip jf jp pfr r rβ β= =  (where the last equality follows from the fact that the portfolio beta 

equals unity). Note that /if ipr β  is the Treynor [1966] risk-adjusted performance ratio. Hence, 

for each asset within the MSRP, the risk premium should be equal to the product of its beta with 

respect to the MSRP and the risk premium of the MSRP :  

 
(11) if ip pfr rβ= .  

 

This is the first-order condition of mean-variance optimality. (When invoking market 

equilibrium, this becomes the familiar “Security Market Line” of the CAPM.)  

� Since we can rewrite the beta as the product of (1) the correlation with the portfolio and (2) the 
quotient of the asset and portfolio volatility, /ip ip if pfβ ρ σ σ= , it follows that in the MSRP the 

pfr

pfσ

p* •
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stand-alone asset Sharpe Ratios and the portfolio’s Sharpe ratio are related by : ipi pSR SRρ= . 

When i ip pSR SRρ> , we can increase the Sharpe Ratio of the portfolio by increasing the weight 

of (or adding) the asset to the portfolio p. 

� Without any additional constraints, the long-only MSRP can be a very concentrated portfolio. 

� When all volatilities, correlations and risk premia are the same, then the MSRP is the 1/N 

portfolio  (which then also coincides with the ERCP and the MVP ). After all, diversification 

lowers risk but in the portfolio context all assets are perfect substitutes. It is not possible to lower 

portfolio risk or increase the portfolio risk premium by changing the weights. Hence, we end up 

with the equally-weighted portfolio.  

Evaluation : 
� The MSRP has the maximum Sharpe Ratio, see Table 15. This is so by construction, since we 

optimized the Sharpe Ratio over the full historical sample period (in-sample). In practice, one 

would sequentially derive the ex ante MSRP from trailing data windows. Whether the MSRP 

indeed delivers the maximum Sharpe Ratio ex post depends on the quality of the inputs, 

especially the risk premia. 

 

Table 15 : Comparative portfolio statistics. 

  
Cap 

Wtd 
1/N MDP MVP ERCP IVP MSRP 

avge 4.71 5.31 4.47 4.44 4.79 4.97 4.98 

stdev 8.24 7.30 4.26 3.99 4.77 5.28 4.20 

SR 0.57 0.73 1.05 1.11 1.00 0.94 1.19 

 

� In our example, the MSRP is indeed a concentrated portfolio, containing mostly Tsies 

supplemented with HY, see Table 16. Tsies dominate because of their low volatility and negative 

correlation with HY. The smaller than unity beta of Tsies reveal that Tsies are included as a 

diversifier; the larger than unity beta of HY shows that HY is included because of its (highest) 

average return). Slight changes in the risk premia of Tsies and HY will change the composition of 

the MSRP markedly. 

 

Table 16 : Risk attribution with respect to MSRP, and implied risk premia and SRs. 

  Eq Tsies IG HY sum 

weight 0% 72% 0% 28%   

beta 1.10 0.79 1.36 1.53   

% risk contribution 0% 57% 0% 43% 100% 

implied risk premium 5.49 3.93 6.77 7.65   

implied Sharpe Ratio 0.33 0.80 1.05 0.68   
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9. Volatility weighting over time 
The risk control strategies as discussed before focus on risk in the cross-section, i.e. over portfolio 

constituents. Risk control at each point in time will also affect the portfolio’s risk level (or more 

generally, its return distribution) over time. Volatility weighting over time, and specifically volatility 

targeting, is designed to explicitly control the portfolio risk level over time. 

Main references : 
� Kirby & Ostdiek [2012] “It’s All in the Timing : Simple Active Portfolio Strategies that 

Outperform Naive Diversification”, 

volatility weighting over time is quite widespread in practice, but this paper documents the 

empirical finding that volatility weighting improves the Sharpe Ratio 

� Hallerbach [2012], “A Proof of the optimality of volatility weighting over time”, 

the title is self-explanatory …. The result holds under mild assumptions.  

Recipe : 
� Set the risky portfolio’s target volatility level V 

� At the start of each period t, take a position w in the risky portfolio and (1-w) in the risk free asset : 

 
(12) (1 )t pt t ft t pft ftw r w r w r r⋅ + − ⋅ = ⋅ +� �   

 
� Estimate the volatility of the risky portfolio for period t : ˆtσ .  

For example by using an adaptive Exponentially-Weighted Moving Average (EWMA) volatility 

process. 

� Rescale the exposure to the risky portfolio to the target volatility level V : 
ˆt

t

V
w

σ
= .  

According to (12), this implies adding a cash position or borrowing (when allowed) at the suitable 

borrowing rate, subject to a leverage constraint. 

� Apply the leverage constraint. When the volatility target V is high or when the forecasted 
volatility is low, cap the implied borrowing by setting tw L≤ , where the maximum leverage ratio 

satisfies 1L ≥ . When 1L = , no borrowing is allowed.  

Characteristics : 
� Volatility weighting and volatility targeting accomplish volatility smoothing over time. 

� Volatility smoothing mitigates the volatility of the portfolio volatility over time. It can be shown 

that the lower the fluctuations of the temporal (“instantaneous”) portfolio volatility within  some 

time period, the lower the aggregate volatility over the whole time period. For details, see 

Hallerbach [2012].    

� Note that volatility smoothing is different from return smoothing. Return smoothing aims at 

achieving a lower aggregate level of return volatility (and not a lower volatility of the volatility 

over time). Return smoothing thus implies less “variance slippage” in compounded returns. This 

variance slippage refers to the difference between the geometric mean and the arithmetic mean. 
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As an approximation, we have  

geometric mean ≈ arithmetic mean – ½ variance. Lowering the return variance by return 

smoothing thus increases the geometric mean of returns, cet. par.  

� Naive Risk Parity or the IVP , i.e. vol weighting in XS, already establishes some volatility 

weighting in TS. 

� Risk targeting or risk control indices have been introduced by S&P, MSCI, FTSE, DJ, and EURO 

STOXX. 

Evaluation – or : Why would volatility targeting work ?  
� First of all, depending on the quality of our volatility forecasts, we should be able to target a 

portfolio’s volatility to some degree over time.  

� In addition, it can be shown that this volatility smoothing increases the Sharpe Ratio or 

Information Ratio of the portfolio, cet. par. (for details, see Hallerbach [2012]).  

� Furthermore, the (risk-adjusted) return of a volatility targeted portfolio benefits from an 

additional timing effect, due to the so-called asymmetric volatility phenomenon. The 

asymmetric volatility phenomenon is a stylized fact that is observed for most financial markets. 

In general, returns tend to be negatively correlated with the volatility of subsequent returns. More 

specifically, surges in financial market volatility are mostly associated with negative returns. The 

volatility feedback mechanism is that higher expected volatility translates into a higher risk 

premium and hence lower realized returns. Hence, under asymmetric volatility, there is a timing 

effect (in addition to the smoothing of volatility) that will boost performance. After all, a 

volatility-weighting strategy takes large positions when volatility is low (and returns are high) 

and small positions when volatility is high (and returns are low). 

� As a cautionary (and perhaps superfluous) note, we stress that implementing a volatility-weighted 

strategy calls for a strict risk-budgeting and risk-monitoring process. In particular, one may want 

to set limits to the maximum position size in order to mitigate the risk of blow-ups when the 

contemporaneous volatility is relatively low. 

 

 

10. Evaluation 
Main references : 

� Inker [2011], “The Dangers of Risk Parity” 

� Lee [2011], “Risk-Based Asset Allocation : A New Answer to an Old Question ?” 

� Leote de Carvalho, Lu & Moulin [2012], “Demystifying Equity Risk-Based Strategies : A Simple 

Alpha plus Beta Description” 

� Goldberg & Mahmoud [2013], “Risk Without Return” 

 

Using risk control techniques (and especially Risk Parity) as full-fledged investment criteria is sometimes 

coined the “new paradigm” in investing. Indeed, conventional 60/40 portfolios or MSRPs are 

concentrated in risks and fail to offer diversification against losses. Risk Control strategies, and Risk 

Parity in particular, can produce balanced portfolios and can offer various degrees of diversification. 
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From a risk perspective, these techniques are indeed expected to deliver what they promise. The catch is 

that risk control portfolios appear to have historically outperformed market cap weighted or mean-

variance optimized portfolios. So while ignoring risk premia information, Risk Control strategies seem to 

offer a better (i.e. more efficient) risk-return trade-off.  

What could be the mechanisms behind this “miraculous” performance of Risk Control strategies ? 

First of all, several studies tune down the apparent outperformance of risk-based strategies by criticizing 

back-tests, see section 6 and Goldberg & Mahmoud [2013]. Secondly, when the underlying mechanism of 

outperformance is an implicit exposure to anomalies or factor premia such as value, size, low beta or 

low (residual) volatility (as shown by Leote de Carvalho, Lu & Moulin [2012]), then it makes much more 

sense to consider these factor exposures explicitly when forming portfolios. Factor investing provides 

much more efficient and effective ways to tailor factor exposures on the portfolio level than applying risk 

control techniques. After all, in the latter case one has to wait what factor exposures will percolate 

bottom-up and reveal themselves in the portfolio.   

 In section 4 we saw that the MDP is the MSRP if all assets have identical Sharpe Ratios. When 

we add the condition that correlations are uniform across the whole asset universe, then the ERCP is the 

MSRP (see section 6). So one could use the argument of estimation risk to justify the use of risk control 

techniques : when we do not have information to meaningfully differentiate between assets (same risk-

return trade-offs and hence equal Sharpe Ratios, and same correlations) the recipe is to treat all assets as 

“substitutes”. But this kind of reasoning leads to an inconsistency, as Lee [2011] argues. After all, when 

all correlations are smaller than unity, combining two assets A and B with equal Sharpe Ratios yields an 

asset AB which has a higher Sharpe Ratio, thus violating the assumption of equal Sharpe Ratios. Only 

when all correlations are perfect (=1), the all Sharpe ratios can be equal – but this in turn implies that all 

assets are perfect substitutes (and hence are redundant).  

 Of course, we do not have to carry this reasoning to the extreme. We do know that mean-variance 

optimized portfolios are error-maximizing (Michaud [1989]) in the sense that their composition is very 

sensitive to inputs (especially risk premia). In this context, the adagium “garbage in, garbage out” applies 

a fortiori. As outlined in section 2 and the Technical Appendix, this estimation risk can be tackled by the 

“Black-Litterman” [1992] approach : start from a Risk Control portfolio, calculate the implied risk premia 

and next use your views and the confidence you place in these views to (slightly) adjust the optimization 

inputs. This procedure results in a less extreme and more robust portfolio. A Risk Control portfolio then 

serves as a starting point  in the portfolio formation process, and this is quite different from accepting a 

Risk Control portfolio as a generator of superior risk-adjusted returns per se. 

 

Coming to a conclusion, we note that the true value of Risk Control strategies is in analyzing and 

specifying a preferred risk contribution profile within the portfolio. This should be part of any risk 

budgeting process. Relevant questions are : What are the risk contributions of my portfolio components ?, 

Is my portfolio properly diversified or are there any hot spots ?, How much confidence do you have in 

risk premia views in order to shift risk contributions within your portfolio ? Do you fully understand the 

sources and contributions of risk and return of your portfolio ? And last but not least, risk is a multi-
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dimensional concept, so risk analyses should not only focus on volatility (standard deviation) but also 

take downside risk and event risk in consideration.  

Risk Control strategies and Risk Parity are no panacea in reaping outperformance. Under realistic 

and implementable back-test assumptions, their outperformance can be linked to overweighting asset 

classes that in the rear view mirror have paired high historical risk premia with low risk levels (as is the 

case for bonds, e.g.) or to implicit exposures to factor premia (anomalies). Focusing directly on factor 

exposures provides a more explicit and more efficient and effective way to capture anomalies and earning 

factor premia.  

Still, aside from their value in a risk budgeting context, Rick Control strategies provide a sensible 

starting point in portfolio optimization when there is considerable uncertainty about the required inputs. 

To illustrate this point, we introduce our portfolio decision pyramid, see Figure 1.  

 

 

Figure 1 : The portfolio decision pyramid 

  
 

� Starting at the bottom of this inverted pyramid, one has no clue about risk and return inputs. The 

only relevant recipe is then to diversify equally across portfolio constituents, yielding the 1/N 

portfolio.  

� When one can only put reliable trust in volatilities, a portfolio can be formed by applying 

volatility-weighting, yielding the IVP. 

� When one has full risk information (reliable estimates of both volatilities and correlations, so the 

full covariance matrix is available), the MVP, the MDP or ERCP (Risk Parity portfolios) can be 

constructed. Of course, one has to take into account the relative shortcomings of these portfolios 

as noted in the relevant sections above. 

� When one trusts all relevant inputs, i.e. the ex ante covariance matrix ànd risk premia, then one 

can build the MSRP.  

� When one accepts risk inputs but at the same time acknowledges the estimation risk attached to 

future risk premia, Risk Control portfolios can serve as a valid starting point in a Black-Litterman 

[1992] procedure.  
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11. Technical appendix 
 

Asset (excess) returns 
We start with an opportunity set of N securities with returns itr� . Tildes indicate random variables. For 

notational simplicity, we henceforth ignore the time index t. 
The risk free rate is denoted by fr , so the excess returns are i f ifr r r− ≡� � . 

 

Portfolio (excess) returns 
We consider a portfolio p defined by the investment weights { }i i p

w ∈ , satisfying full investment 

1
1

N
ii

w= =∑  and no short positions : 0,iw i p≥ ∀ ∈ .  

The portfolio return is given by p i ii p
r w r∈=∑� � . Likewise, the portfolio excess return is given by : 

(13) pf i ifi
r w r=∑� �  

In Excel this is easily computed by the function “SUMPRODUCT( [w], [r])” . 

 

Marginal and component contributions to portfolio (excess) return 
It follows from eq.(13) that the marginal contribution of asset i to portfolio excess return is given by ifr� . 

This is the increase in portfolio excess return when the weight of asset i is increased marginally. 
The component (i.e. full) contribution of asset i to portfolio excess return is i ifw r� . The sum of component 

contributions to excess return equals the portfolio’s excess return, see eq.(13).  

 

Portfolio risk premium 
The average portfolio return over the risk free rate, the portfolio risk premium, follows as : 

(14) pf i ifi p
r w r∈=∑ . 

The marginal and component contributions of asset i to the portfolio risk premium are ifr  and i ifw r , 

respectively. 

 

Portfolio variance 

The portfolio variance is defined by the double sum : 

(15) 2
pf i j iji j

w wσ σ=∑ ∑ .  

By definition of the correlation ijρ , the covariance ijσ  can be expressed as ij ij i jσ ρ σ σ= . 

Since : 

� the variance of a variable is the covariance of that variable with itself, and  

� the covariance is a linear operator (the covariance of a weighted sum is the weighted sum of 

covariances),  

we can write the variance of the portfolio excess return as :   

(16) ( ) ( ) ( )var cov , cov ,pf pf pf i if pfi
r r r w r r≡ = ∑� � � � �  ( )cov ,i if pf i ipfi i

w r r wσ= =∑ ∑� � ,  
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where ipfσ  is the covariance between the excess returns on asset i and the portfolio p. 

So although the portfolio variance is the quadratic sum of weights and covariances, we can 

express the portfolio variance as the weighted sum of the covariances of each asset with the portfolio : 
2
pf i ipfi

wσ σ=∑ .  

 

Decomposing portfolio volatility 
Dividing the previous expression by the portfolio volatility we get : 

(17) ipf
pf ii

pf

w
σ

σ
σ

=∑ .   

Indeed, it is not the decomposition of portfolio variance we are looking for, but the decomposition of 

portfolio volatility , as defined by eq.(17). To see why this is true, note that the portfolio volatility is 

linearly homogeneous in the portfolio weights : multiplying portfolio weights with a constant k multiplies 

the portfolio volatility with the same constant k. Euler’s theorem then implies that pf
pf ii

i

w
w

σ
σ

∂
=

∂∑ , 

where it can be checked from (16)  that pf ipf

i pfw

σ σ
σ

∂
=

∂
. The term pf

iw

σ∂
∂

 is the marginal contribution of 

asset i to portfolio volatility. The term ipf
i

pf

w
σ
σ

 is the component contribution of asset i to portfolio 

volatility.  The sum of all component contributions to volatility equals total portfolio volatility, see eq.(17). 

The portfolio volatility is the cake and each component contribution is a separate piece of that cake. 
Dividing (17) by pfσ  yields the relative risk contributions of the assets, summing to 100% :  

(18) 
21 ipf

ii
pf

w
σ
σ

=∑ .  

To gain further insight into this decomposition, consider the OLS regression of asset’s i excess 

returns on the portfolio excess returns :  

 
(19) if i ip pf ir rα β ε= + + �� � .  

 

In this regression, the expected (or average) value of the disturbances is zero and the disturbances and the 

portfolio excess return are uncorrelated, hence ( ) ( ) 0i pf iE E rε ε= =� �� . The regression slope or beta is 

defined as : 

(20) 
2
ipf if

ip ip
pfpf

σ σ
β ρ

σσ
= = .  

In Excel, this slope is calculated by the function “SLOPE( [r if], [r pf] )” . Substituting the expression for 

beta in (18) gives : 

(21) 1 i ipi
w β=∑  
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So ipβ  is the relative marginal contribution of asset i to portfolio volatility (or the relative marginal risk 

contribution) :  

(22) 
/pf pf

ip
iw

σ σ
β

∂
=

∂
 

and i ipw β  is the asset’s relative component contribution to portfolio volatility. So given the assets’ betas, 

the decomposition of portfolio volatility is a piece of cake. When i ipw β  is comparatively large, this 

identifies a “hot spot” in the portfolio, or a pocket of risk concentration, indicating that asset’s i 

contribution to portfolio risk is large. Hence, this position is likely to contribute heavily to any loss that 

may be realized on the portfolio. 
 Sumarizing : { }iw  defines money allocation and β⋅{ }i iw  defines risk allocation. To go from 

money allocation to risk allocation, each investment weight is multiplied with the corresponding beta 

(note that the average value of beta is unity). 

 

Portfolio optimality : maximize the Sharpe Ratio 
From eq.(19) it follows that the expected excess return or risk premium  of asset i  is related to the 

portfolio’s risk premium as : 

 
(23) if i ip pfr rα β= +  

 

Now consider the mean-variance optimal portfolio, this is the portfolio that maximizes the Sharpe Ratio : 

(24) 
{ }
max

i i p

pf
p

w pf

r
SR

σ∈

=  

The first-order conditions for optimality can be shown to imply the following relation between risk 

premia and betas : 

 
(25) if ip pfr rβ=  

 

In words : for the maximum Sharpe Ratio Portfolio MSRP, the risk premia of all constituents are 

proportional to their betas. Considering eq.(23), this implies that for all assets included in the MSRP p*, 
the alpha  iα  equals zero, 0 *i i pα = ∀ ∈ . To provide some intuition, note that for each asset 

comprised in a maximum Sharpe Ratio portfolio the relative marginal contribution to excess return must 

equal the relative marginal contribution to risk, or : 

(26) if
ip

pf

r

r
β=  

This can be rephrased as requiring equal ratios of marginal return and risk contributions :4 

                                                             
4 Note that /if ipr β  is the Treynor [1966] ratio of risk-adjusted performance.  
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(27) if jf
pf

ip jp

r r
r

β β
= =  

If this does not hold, the Sharpe Ratio of the portfolio can be improved by increasing the weight of the 

assets with higher contributions to return (or lower contributions to risk) and decreasing the weight of 

assets with lower contributions to return (or higher contributions to risk).  
In other words, referring to eq.(23), when an asset’s alpha is positive, 0iα > , this asset shows 

outperformance against the portfolio and the Sharpe Ratio of the portfolio can be increased by increasing 
the weight of this asset. Conversely, when an asset’s alpha is negative, 0iα < , this asset shows 

underperformance and the portfolio’s Sharpe Ratio can be increased by decreasing the weight of this 

asset. Summarizing : in a MSRP, high risk contribution should be matched with high return contribution. 

A more than proportionate return-to-risk contribution indicates a positive “alpha”. 

 

Two additional comments are in order. Firstly, you may recognize in eq.(25) the infamous “Security 

Market Line” or the Capital Asset Pricing Model CAPM . However, the results above apply to any 

maximum Sharpe Ratio portfolio, whereas the CAPM applies to the equally infamous market portfolio 

(the overall market cap weighted portfolio containing all assets) under the heroic equilibrium assumption 

that this portfolio is mean-variance efficient. Hence, the results presented above are completely general. 

Secondly, using the second definition of beta in eq.(20) allows us to rewrite (25) as 
/ /if if ip pf pfr rσ ρ σ= . Using the definition of the Sharpe Ratio, this boils down to : 

 
(28) i ip pSR SRρ=  

 

In words : for any maximum Sharpe Ratio portfolio, any constituent’s the stand-alone Sharpe Ratio 

equals the product of (i) its correlation with this portfolio and (ii) the Sharpe Ratio of the portfolio. When 

an asset’s Sharpe Ratio is larger (smaller), this implies that the asset’s alpha is positive (negative). This 
also applies to assets not comprised in the portfolio. When α >0i , or equivalently i ip pSR SRρ> , the 

Sharpe Ratio of the portfolio is increased by adding that asset to the portfolio (and vice versa). 

 

Reverse optimization : implied risk premia 
In conventional mean-variance portfolio optimization, the asset’s risk premia and their covariance matrix 

are used to calculate the weights of the maximum Sharpe Ratio portfolio. In reverse portfolio 

optimization, it is assumed that the portfolio at hand actually is the maximum Sharpe Ratio portfolio. 

Together with the covariance matrix of excess returns this allows us to derive the “imputed” risk premia 

(see Sharpe [1974]). Using these implied risk premia together with the asset’s standard deviations, we can 

then compute the implied Sharpe Ratios. Hence, given a particular portfolio, these implied risk premia (or 

implied Sharpe Ratios) would make this portfolio the maximum Sharpe Ratio portfolio.  

How do we derive these implied risk premia ? Accepting the portfolio risk premium as is, we 

simply use the first-order condition for the MSRP in eq.(25) together with the asset betas to compute the 
implied risk premium *ifr  as the product of the beta and the portfolio risk premium : 
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(29) *if ip pfr rβ=  

 
The implied Sharpe Ratio readily follows as * * /i if ifSR r σ= . 

 Deriving implied risk premia is relevant when there is uncertainty about ex-ante risk premia. It is 

well-known that composition of the MSRP is very sensitive to the input risk premia; slight differences in 

these inputs can result in very different (and sometimes “unrealistic” or extreme and hence unacceptable) 

portfolios. At the same time, estimating ex-ante risk premia is a very difficult task. Reverse optimization 

can help since the assets’ implied risk premia serve as a sensible starting point. Depending on the 

confidence placed in one’s ex-ante views, one can next adjust the implied risk premia accordingly. After 

this two-stage process, the resulting portfolio is closer to the original portfolio and less extreme. This two-

stage portfolio optimization process is proposed by Black & Litterman [1992].  
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