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The aim of this paper is to extend our previous work on a novel and recent class of
nonlinear filters called Spline Adaptive Filters (SAFs), implementing the linear part of the
Wiener architecture with an IIR filter instead of an FIR one. The new learning algorithm is
derived by an LMS approach and a bound on the choice of the learning rate is also
proposed. Some experimental results show the effectiveness of the proposed idea.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the last few decades several researchers have made
many efforts towards nonlinear adaptive filtering theory
and applications [1,2]. Unfortunately, differently from the
linear case [3], a general theoretic framework is not yet
available for the nonlinear one.

In order to model nonlinear systems, Volterra series [4]
were introduced so far. Due to the large number of free
parameters required, the Volterra Adaptive Filter (VAF) is
generally used only in situations of mild nonlinearity [4,5].
Approaches based on simplified VAF implementing fast
affine projection algorithm (FAPA) are often preferred
[6,7]. Also neural networks (NNs) [8] represent a flexible
tool to realize nonlinear filters, but this approach generally
requires a high computational cost and shows some
difficulties in adaptivity.
x: þ39 06 4873300.
(M. Scarpiniti),
In practice, the so-called block-oriented representation,
is used in nonlinear filtering, which consists of the con-
nection of a linear time invariant (LTI) filter and a mem-
oryless nonlinear functions. The basic classes of block-
oriented nonlinear systems are represented by the Wiener
model (a cascade of a linear LTI filter followed by a static
nonlinear function) and the Hammerstein model (a cas-
cade connection of a static nonlinear function followed by
an LTI filter) and by those system architectures originated
by the connection of these two classes according to
different topologies (i.e. parallel, cascade, feedback etc) [2].

Very recently, we have proposed a novel block-oriented
Wiener architecture, called Spline Adaptive Filters (SAFs)
[9]. The proposed architecture is composed by a FIR filter
followed by an adaptable look-up table (LUT) addressed by
the linear combiner output and interpolated by a local low
order polynomial spline curve. In [9] it is shown that SAF is
able to well identify Wiener systems with high order
nonlinearities.

In this brief paper we want to extend the SAF archi-
tecture proposed in [9], implementing the linear filter
with an adaptive IIR architecture. The main advantage
of using IIR filters over FIR filters is their efficiency in
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Fig. 1. Block diagram of a Wiener system.

M. Scarpiniti et al. / Signal Processing 108 (2015) 30–35 31
implementation: the matching of a particular specification
can be accomplished with a lower number of parameters.
The whole system will be adapted by a stochastic descent
gradient using an output error-like method and a bound
on the learning rate will be provided as well.

Since the LUT interpolated by a spline is a bounded
function, the stability (in BIBO sense) of the proposed
structure is guaranteed if the IIR part is stable. So in this
work the problem of stability criteria, related to the poles
of the IIR transfer function, is not addressed. Many authors
have proposed in the literature different solutions to this
problem [10,11], that can be simply imported in our
architecture. However using the derived bound in con-
junction with a simple heuristic parameters initialization,
no particular stability issues have arisen during experi-
mental results. In any case, the position of poles can be
checked during the learning phase, and any unstable poles
can easily be projected back inside the stable region to
some appropriate location [10], with the drawback of a
higher computational cost.

2. Spline interpolation

Splines are smooth parametric curves defined by inter-
polation of properly defined control points collected in
a lookup table. Let y½n� ¼φðs½n�Þ be some function to be
estimated. The spline estimation provides an approximation
φin ðunÞ based on two parameters un and in directly depend-
ing on s½n�. In the general case, given Q equispaced control
points, the spline curve results as a polynomial interpolation
through Q�1 adjacent spans. In this specific application, we
use cubic spline curves, so for each input occurrence s½n� the
spline is using four control points selected inside the lookup
table. Two points are the adjacent control points on the left
side of s½n�, while the other two points are the control points
on the right side. The computation procedure for the
determination of the span index in and the local parameters
un can be expressed as follows [9]:

un ¼
s½n�
Δx

� s½n�
Δx

� �
;

in ¼
s½n�
Δx

� �
þQ�1

2
; ð1Þ

where Δx is the uniform space between knots, ⌊�c is the
floor operator and Q is the total number of control points.
For simplicity of notation in the following we will use in � i.

The interpolated nonlinear output y½n� can be easily
evaluated by the following matrix product:

y½n� ¼φiðunÞ ¼ uT
nCqi;n; ð2Þ

where unAR4�1 ¼ u3
n;u

2
n;un;1

� �T , qi;nAR4�1 ¼ qi; qiþ1;
�

qiþ2; qiþ3�T with qk be the kth control points and C is a
4�4 matrix, depending on which spline basis is adopted
to perform interpolation, usually B-spline or Catmul-Rom
(CR) spline [9]. The derivative of (2) with respect the local
abscissa un can be evaluated simply by

φ0
iðunÞ ¼ _uT

nCqi;n; ð3Þ
where _unAR4�1 ¼ 3u2

n;2un;1;0
� �T .

We refer to our previous work [9] for a more complete
reference to this topic.
3. IIR Wiener spline adaptive filter

With reference to Fig. 1, let the input–output relation-
ship of the adaptive filter be

y½n� ¼φðs½n�;qi;nÞ ¼ uT
nCqi;n; ð4Þ

s½n� ¼ ∑
M�1

k ¼ 0
bk½n�x½n�k�þ ∑

N

k ¼ 1
ak½n�s½n�k�; ð5Þ

where bk½n� and ak½n� are, respectively, the kth parameter
of the MA and AR part of the IIR system at the time index
n. M and N are the numbers of coefficients of the MA and
AR parts, respectively. For simplicity, the filter taps vector
wn is written as

wnARðMþNÞ�1 ¼ b0½n�; b1½n�;…; bM�1½n�; a1½n�;…; aN½n�
� �T

:

ð6Þ
Denoting then with x̂nARðMþNÞ�1 ¼ x½n�; x½n�1�;…; x½n�½
Mþ1�; s½n�1�;…; s½n�N��T , the IIR filter output can be
expressed as

s½n� ¼wT
nx̂n: ð7Þ

In order to derive the LMS learning algorithm, let us
consider the cost function

J wn;qi;n

� �¼ e2½n�; ð8Þ

where e½n� ¼ d½n��y½n� is the error signal and d½n� is the
reference signal. Hence the learning rule for the adaptation
of the linear filter coefficients is given by

Δwn ¼∇wn J wn;qi;n

� �¼ �2e n½ �∇wny n½ �

¼ �2e n½ �∂y½n�
∂un

∂un

∂s½n�∇wn s n½ � ¼ �2e n½ �φ0
i unð Þ 1Δx

∇wn s n½ �;

ð9Þ

where the gradient vector ∇wn s½n� is defined as

∇wn s n½ � ¼ ∂s½n�
∂b0½n�

;…;
∂s½n�

∂bM�1½n�
;
∂s½n�
∂a1½n�

;…;
∂s½n�
∂aN½n�

� 	T
:

Using (5), it is easy to get

∂s½n�
∂bi½n�

¼ x n� i½ �þ ∑
N

k ¼ 1
ak n½ �∂s½n�k�

∂bi½n�
; ð10Þ

for i¼ 0;1;…;M�1, and

∂s½n�
∂ai½n�

¼ s n� i½ �þ ∑
N

k ¼ 1
ak n½ �∂s½n�k�

∂ai½n�
; ð11Þ

for i¼ 1;…;N. For simplification purpose, let us pose βi½n�
¼ ∂s½n�=∂bi½n� and αi½n� ¼ ∂s½n�=∂ai½n�. Moreover, assuming
that the coefficients bi½n� and ai½n� vary slowly in time, as
a usual simplification in the literature [3], we get

∂s½n�k�
∂bi½n�

� ∂s½n�k�
∂bi½n�k� ¼ βi n�k

� �
; ð12Þ



Table 2
Mean values and variance of spline control points in first experiment
averaged over 30 trials, for a¼0.5 and B-spline basis.

i q0 Mean Variance �10�5

7 �1.00 �0.965 9.254
8 �0.80 �0.828 1.920
9 �0.91 �0.878 5.105

10 �0.40 �0.395 2.018
11 �0.20 �0.195 6.850
12 0.05 0.056 7.416
13 0.00 �0.012 4.686
14 �0.15 �0.105 17.593
15 0.58 0.529 39.985
16 1.00 1.002 3.998

Table 1
Mean values and variance of filter taps in first experiment averaged over
30 trials, for a¼0.5 and B-spline basis.

Tap w0 Mean Variance �10�5

b0 0.60 0.611 3.240
b1 �0.40 �0.404 7.455
a1 0.20 0.201 11.506
a2 �0.50 �0.500 6.659
a3 0.10 0.100 10.523
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and

∂s½n�k�
∂ai½n�

� ∂s½n�k�
∂ai½n�k� ¼ αi n�k

� �
; ð13Þ

for k¼ 1;2;…;N. Now substituting (12) and (13) in (10) and
(11), we obtain the following recursive equations:

βi½n� ¼ x½n� i�þ ∑
N

k ¼ 1
ak½n�βi½n�k�; ð14Þ

and

αi½n� ¼ s½n� i�þ ∑
N

k ¼ 1
ak½n�αi½n�k�: ð15Þ

Let now us define the following vector

ηnARðMþNÞ�1 ¼ β0½n�;β1½n�;…;βM�1½n�;α1½n�;…;αN½n�
� �T

;

ð16Þ
hence the LMS algorithm, using (9) and (16), can be finally
rewritten as

wnþ1 ¼wnþμw½n�φ0
iðunÞe½n�ηn; ð17Þ

where the learning rate μw½n� absorbs the constants 2 and
Δx.

For the adaptation of the spline control points, we
proceed as shown in [9]

Δqi;n ¼∇qi;n
J wn;qi;n

� �¼ �2e½n�∇qi;n
y½n� ¼ �2e½n�CTun;

ð18Þ
obtaining the final algorithm

qi;nþ1 ¼ qi;nþμq½n�e½n�CTun; ð19Þ

where the learning rate μq½n� absorbs all constants.
From the computational point of view, in addition to

the adaptation of the linear filter that, for the case of the
IIR LMS algorithm, is equal to 2Mþ4N multiplications plus
2Mþ4N additions for each iteration, we have to consider
the adaptation of the control points qi;n. In particular, for
each iteration only the ith span of the curve is modified by
calculating the quantities un, i and the expressions uT

nCqi;n,
_uT
nCqi;n and CTun. Note that the calculation of the quantity

Cqi;n is executed during the output computation, as well as
in the adaptation phase (the spline derivatives). The cost
for the spline output computation and its adaptation is
4KM multiplication, plus 4KA additions, where KM and KA

are constants (less than 16), depending of the implemen-
tation structure. In any case, if MþN ≫ 4, the computa-
tional overhead, for the nonlinear function computation
and its adaptation, can be neglected with respect to the
recursive linear filter.

3.1. Choice of the learning rate

The Taylor series expansion of the error e½nþ1� around
the instant n, stopped at the first order is

e½nþ1� ¼ e½n�þ∇T
wn

e½n�Δwnþh:o:t., ð20Þ

where h.o.t. means high order terms. Now, using (17), we
derive

∇T
wn

e½n� ¼ �φ0
iðunÞx̂T

n; ð21Þ
Δwn ¼ μw½n�φ0
iðunÞe½n�ηn: ð22Þ

Substituting (21) and (22) in (20), we can obtain after
simple manipulations

e½nþ1� ¼ 1�μw½n�φ02
i ðunÞx̂T

nηn
h i

e½n�: ð23Þ

Imposing for the convergence that je½nþ1�jo je½n�j, the
following constrain must be satisfied

1�μw½n�φ02
i ðunÞx̂T

nηn



o1




 ð24Þ

which implies

0oμw n½ �o 2

φ02
i ðunÞjx̂T

nηn :j
ð25Þ

A similar constraint on μq½n� can be derived as done in [9].

4. Experimental results

A first experiment is performed in order to demon-
strate the convergence behavior of the proposed IIR SAF.
The experiment consists in the identification of an
unknown Wiener system composed by a linear compo-
nent, represented by the following recursive filter

H zð Þ ¼ 0:6�0:4z�1

1þ0:2z�1�0:5z�2þ0:1z�3;

and a nonlinear memoryless target function implemented
by a 23 points length LUT q0, interpolated by a uniform
third degree spline with an interval samplingΔx¼ 0:2 and
defined as

q0 ¼ �2:2; �2; �1:8;…; �1:0; �0:8; �0:91;0:4;f
�0:2;0:05;0; �0:15;0:58;1:0;1:0;1:2;…;2:0;2:2g:
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The input signal x½n� consists in 30.000 samples of the
signal generated by the following relationship:

x½n� ¼ ax½n�1�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2

p
ξ½n�; ð26Þ
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addition it is considered an additive white noise v½n�with a
signal to noise ratio SNR¼30 dB. The learning rates are set
to μw ¼ μq ¼ 0:01 and B-spline basis is used. The orders of
MA and AR parts of the IIR adaptive filter are set to M¼2
and N¼3 respectively. We choose w�1A RðMþNÞ�1 ¼
1;0;…;0½ �T as initialization for filter weights, while spline
control points q�1 are initialized as a straight line with a
unitary slope, conditions that give always good results in
simulations. The choice of initializing the nonlinearity as a
straight line is the simplest and most intuitively one. Since
we have no a priori information on the shape of this
nonlinearity, the line seems a good initial choice, i.e. at the
beginning of the learning procedure the adaptive filter is
linear. This means that if the model is also linear we have
not to change the control points, while in the case mild
nonlinearity the control points have not to move far from
the line, on the contrary as they have made if we start
from a random initialization or another shape.
Table 3
Summary of convergence test. The table shows the MSE for different
values of the learning rate μw.

μw MSE (dB) μw MSE (dB)

0.01 �29.6885 0.09 �12.1145
0.02 �28.9986 0.10 �11.7566
0.03 �28.6959 0.11 �10.4406
0.04 �28.4122 0.12 �9.6226
0.05 �27.7498 0.13 1
0.06 �25.2897 0.14 1
0.07 �24.9017 0.15 1
0.08 �23.3056 0.16 1
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Fig. 4. MSE averaged over 30 trials of the proposed approach (IIR WSAF) for the
basis, compared with a full 3-rd order Volterra filter, a simple FIR SAF (WSAF) a
Results in the case of a¼0.5, averaged over 30 trials, are
summarized in Table 1, that shows mean values and var-
iances of each filter tap, while Table 2 shows mean values
and variances of central spline control points. Mean and
variance are evaluated once the filter has completely con-
verged. Moreover, Fig. 2 shows the profile of the spline
function in the adaptive filter after the learning, while Fig. 3
shows the mean square error (MSE) over 30 trials. These
figures clearly show the effectiveness of the proposed
approach in identifying the given Wiener system.

In addition, in order to validate the bound in (25), we
run simulation using different values of the learning rate μw

chosen in the set f0:01;0:02;…;0:16g, while μq ¼ 0:01 and
a¼0.9. A summary of the MSE, averaged over 30 trials, is
proposed in Table 3. The MSE value is obtained as a mean of
the last 1000 samples of the squared error. This table shows
that the architecture converges until μw ¼ 0:12 and then it
diverges. We also evaluate the right side of (25) over 30
trials, obtaining a sequence of upper bounds for μw½n�. The
minimum of this sequence provides the value 0.1276, hence
validating the bound in (25) and confirming the results in
Table 3.

In a second experimental test, the system to identify is
the Back and Tsoi NARMAmodel reported in [12]. This model
consists in a cascade of the following 3-rd order IIR filter

H zð Þ ¼ 0:0154þ0:0462z�1þ0:0462z�2þ0:0154z�3

1�1:99z�1þ1:572z�2�0:4583z�3 ; ð27Þ

and the following nonlinearity

y½n� ¼ sin ðs½n�Þ: ð28Þ
The input signal x½n� is the colored signal obtained with (26),
choosing a¼0.95 and consists of 5� 104 samples. The
.5 3 3.5 4 4.5 5
x 104

i NARMA model

ples

IIR WSAF
Volterra
WSAF
IIR Poly

Back and Tsoi NARMA model in (27) and (28) with a¼0.95 and B-spline
nd a conventional IIR polynomial filter (IIR Poly).
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learning rates are set to μw ¼ μq ¼ 0:1 and B-spline basis is
used. The orders of MA and AR parts of the IIR adaptive filter
are set to M¼4 and N¼3 respectively. Filter weights and
spline control points are initialized as in the previous test.

Fig. 4 shows the MSE averaged over 30 trials of the IIR
SAF approach compared with a full 3-rd order Volterra
architecture with Mv¼15 coefficients and adapted by a
LMS algorithm with μv ¼ 0:01, a simple FIR SAF approach
[9] using 15 filter taps μw ¼ μq ¼ 0:02 and a conventional IIR
polynomial filter [4] using μp ¼ 0:01, M¼4, N¼3 and a 5-th
order polynomial. The figure clearly demonstrates the super-
iority of the proposed approach even in the proposed case.

5. Conclusion

In this paper a variant of our previous SAF architecture
[9] is proposed. In particular an IIR filter is used to
implement the linear part of the proposed Wiener archi-
tecture. The new learning algorithm is derived based on
a gradient descent approach. In addition a bound on the
choice of the learning rate is also proposed.

Finally some experimental results on convergence and
nonlinear Wiener system identification, prove the effec-
tiveness of the proposed idea.
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