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Traffic accidents constitute a major problem worldwide. One of the principal causes of traf-
fic accidents is adverse driving behavior that is inherently influenced by traffic conditions
and infrastructure among other parameters. Probabilistic models for the assessment of
road accidents risk usually employs machine learning using historical data of accident
records. The main drawback of these approaches is limited coverage of traffic data. This
study illustrates a prototype approach that escapes from this problem, and highlights
the need to enhance historical accident records with traffic information for improved road
safety analysis. Traffic conditions estimation is achieved through Dynamic Traffic Assign-
ment (DTA) simulation that utilizes temporal aspects of a transportation system. Accident
risk quantification is achieved through a Bayesian Networks (BNs) model learned from the
method’s enriched accidents dataset. The study illustrates the integration of BN with the
DTA-based simulator, Visual Interactive Systems for Transport Algorithms (VISTAs), for
the assessment of accident risk index (ARI), used to identify accident black spots on road
networks.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Road accident statistics in Europe stress the need for more systematic mechanisms for accident analysis and prediction.
According to the World Health Organization road accidents constitute one of the leading cause of death for people between
the ages of 5–44 (Kapp, 2003; WHO, 2011). Given the current trends, accident fatalities are projected by 2020 to become the
fifth leading cause of death worldwide resulting in an estimated 2.4 million deaths each year (WHO, 2011). At the same time,
traffic accidents result in high economic losses due to traffic congestion which in turn leads to a wide variety of adverse con-
sequences such as, traffic delays, supply chain interruptions, travel time unreliability, increased noise pollution, as well as
deterioration of air quality. To combat these and the intrinsic accident risks, road safety has emerged as a priority alongside
road safety management and forecasting practices. These however, suffer from major limitations and need improvement to
effectively tackle this problem. One of the problems faced is data availability for the development of crash prediction and
analysis models. This work contributes in this direction through the development of a prototype accident risk index quan-
tification approach that overcomes the data availability problem by combining simulated data with historical data for the
development of a BN accident prediction model.

Inherently, road networks constitute complex dynamic and uncertain systems influenced by human, technological and
environmental parameters. Therefore, one of the best ways to understand the causes of road traffic accidents is to develop
models capable integrating significant factors relating to human, vehicle, socio-economic, infrastructural, and environmental
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properties. There are two broad categories of accident analysis methods: the qualitative and the quantitative. The former,
despite its limited use, plays an important role in the process of accident analysis, modeling and forecasting. Qualitative
analysis is subjective, exploratory and interpretative, while quantitative is based on the positivist philosophy and hence
more widely used. Quantitative methods are classified into two principal groups: Time-series forecasting and Causality-
based forecasting. The accident analysis approach proposed herein combines causality-based with a systemic technique, spe-
cifically, BN and Traffic simulation. The former is popular in the Artificial Intelligence domain and is based on the concept of
Bayesian probability. BN provide a language and calculus for reasoning under uncertainty and incomplete information (Pearl,
2009). Hence, they are useful for inferring probabilities of future events, on the basis of observations or other evidence that
may have a causal relationship to the event in question. Due to these characteristics BNs are becoming very popular in acci-
dent analysis. The second technique employed in the proposed approach is the use of a road traffic simulator using simula-
tion-based DTA. The DTA produces estimates of traffic flow conditions for every 15-min time interval of a simulation. These
estimates include, traffic flow and speed at link and movement level. Under well calibrated data, DTA estimates can be used
as additional explanatory variables in accident prediction models. Overall, the method described herein quantifies accident
risk index to predict road sections with high accident frequencies that constitute the network’s black spots.

The paper is organized as follows: An overview of the literature and related work is presented first. Next, an outline of the
method is shown. Following this, the theoretical underpinnings of BN are illustrated. Subsequently, the approach followed to
implement VISTA and BN models is presented. Next, a description of the integration of the two techniques is provided and
finally, results from this integration are presented before conclusions are drawn.
2. Literature review

Historically, DTA was pioneered by the United States Federal Highway Administration (FHWA) through sponsoring the
development of two mesoscopic DTA modes the DYNASMART-P (Mahmassani et al., 2000) and the DYNAMIT (Ben-Akiva
et al., 2002), at the University of Texas and Massachusetts Institute of Technology respectively. Parallel to these efforts, Zili-
askopoulos and Lee (1996) developed the RouteSim mesoscopic simulator and the Visual Interactive System for Transport
Algorithms DTA (VISTA-DTA) (Ziliaskopoulos et al., 2004). Currently, many more simulation-based models have been devel-
oped around the world as the transport agencies are embracing them as a tool to evaluate various infrastructure and oper-
ational network improvements. These include DynusT (Chiu et al., 2008), Dynameq (Florian and Mahut, 2005; Florian et al.,
2008), AIMSUN (Barcelo and Casas, 2002), TRANSMODELER (Caliper Corporation, 2009), INTEGRATION (Aerde et al., 1996)
and METROPOLIS (de Palma and Marchal, 2002). The DTA model used in this study is realized in VISTA (Ziliaskopoulos
et al., 2004; VISTA, 2002; Ziliaskopoulos and Barrett, 2006), which at convergence it reaches a local DUE. The main output
of a DTA model is the OD DUE of vehicles’ trajectories based on six seconds or less simulation time step. Hence, the analyst
can aggregate the traffic flow characteristics at the link, movement, path, sub-network, network level as desired.

The principal characteristics of simulation-based DTA models are: (1) A dynamic Origin–Destination (OD) matrix, esti-
mated using a combination of techniques such as, OD surveys, traffic counts, path trajectories via location estimation devices
i.e. GPS and wireless roadside vehicle readers. (2) The DTA model propagates the OD demand using a mesoscopic traffic sim-
ulator such as Daganzo’s (1994) cell transmission model at every six seconds or less. Vehicles move in packets from one cell
to the next subject to the traffic flow theory laws of density, flow and speed. (3) Each vehicle moves along a time-dependent
shortest path that is determined at each iteration. (4) The model converges to a Dynamic User Equilibrium (DUE) that states
that no user can unilaterally improves his/her travel time (cost) by changing his/her departure or desired arrival time and
path within the assignment time interval. Therefore, for each path with vehicles and for a specific time interval, each path
will eventually have the same travel time as the other paths for each OD pair. (5) DTA models converge to a local DUE. Global
DUE is computationally intractable while until now no model reported has ever claimed global convergence.

A thorough review of the main characteristics of DTA models is presented by Peeta and Ziliaskopoulos (2001). An eval-
uation of DTA models conducted by Parvathy et al. (2012)) used the following discriminators: simulation unit (link and/or
cell), simulation time step (less/equal to 6 s), modeling of signals (pre-timed and/or actuated), stop signs, use of zone con-
nectors, lane connectivity modeling (implicit or explicit), equilibration method (gradient, MSA), iterations needed to reach a
DUE (30–60), modeling of a generalized cost function, and the computing platform. VISTA is a DUE convergent model that
uses the simplicial decomposition algorithm and is the only Internet-based DTA model running on Linux whereas the
remaining are Windows/PC based. This study also demonstrates that the interest in implementing DTA models is increasing,
while it points to the challenges of calibration that requires substantially more data than Static Traffic Assignment (STA)
models and the slow convergence (Mahut et al., 2004) that requires hours versus minutes for STA models. The main
characteristics of DTA models, their differentiation from STA models, the issues of stability and convergence can be found
at the primer (Chiu et al., 2011). The primer provides support to the implementation of DTA models as a tool to estimate
the traffic flow conditions at 15-min time intervals. This necessitates modeling with sufficient accuracy the aggregated
demand (in 15-min time intervals), roadway geometry, traffic control and traveler information devices/services.

Microscopic traffic simulators may produce additional traffic flow characteristics that may provide more explanatory
variables on the causation of accidents such as the distribution of the vehicle speeds, the headway distribution among
vehicles, acceleration/deceleration and gap acceptance in lane changing maneuvers. Various microscopic simulators could
be employed for accident analysis such as CORSIM, VISSIM, PARAMICS, WATSIM (FHWA, 2003) and others. Their main
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deficiency over mesoscopic DTA models is that they do not have a true traveler behavior routing component (Peeta and Zili-
askopoulos, 2001; Sisiopiku and Li, 2006). This is due to the magnitude of the computations that these models need to per-
form to mimic the driving behavior of each vehicle in the model. These models model traffic by splitting it probabilistically at
intersections based on historical records or following predetermined or DTA paths that are non-DUE. Hence, they cannot be
used to accurately predict traffic flow conditions based on the DUE principle. A continuously calibrated DTA model utilizing a
microscopic traffic simulator that reaches DUE solution, is the best model that could be utilized for traffic flow estimation
and prediction on a systematic basis. Yet such a model is not feasible due to its unreasonable computational cost that re-
quires days to converge to a DUE and the unavailability of data to conduct an appropriate calibration.
3. BN related work

Road safety assessment can be performed in different ways; scenario analysis (Tsai and Su, 2004; Fleury and Brenac,
2001) is one approach used that stemmed from the complex systems reliability domain. Traditional approaches to road
safety include: Comparable evaluation of Road Safety Audit, Road Safety Inspection and Road Safety Impact Assessment.
The main disadvantages of these methods are cost and time to carry out. The underlying component of a scenario is the no-
tion of an atypical event. An event constitute an element of an accident scenario sequence, and there may be good reason to
believe that similar events have caused similar accidents in the past, but that is not sufficient to establish that this event
alone was a cause of the accident at hand. Over the past 15 years or so there has been increased interest in causal inference
as a component of artificial intelligence, and one especially useful approach (Sohn and Lee, 2003) is based on what Pearl
(1988, 2009) calls a causal model which inherently constitute the backbone of BN technology that is employed in this study.
Scenarios are used to designate a prototype or a model of an accident process characterized by chains of facts, actions, causal
relations and consequences in terms of damage to people and property. Scenarios are used to design and improve prevention
strategies, either by studying past experience or by seeking to foresee chains of situations leading to catastrophes. Therefore,
scenario analysis as a causality investigation technique it examines event patterns that can occur either sequentially or in
parallel. Scenarios can be expressed as instantiations of nodes on BN models (Sutcliffe and Gregoriades, 2007) or event spec-
ifications in Event trees, Fault trees (Zheng and Liu, 2009). Automated scenario variation is a technique used by Gregoriades
et al. (2010) to identify black spots on a road network by systematically changing ‘‘seed’’ scenarios to exhaustively analyze all
possible conditions at different sections of the road network. An evaluation of black spot assessment methods by Huang et al.
(2009) provides insightful suggestions on pros and cons of each approach. Scenarios are usually expressed as event se-
quences that combine information from the environment, the road users, the weather or the road infrastructure. Modeling
scenarios using Event and Fault trees however is based on the assumptions that accidents are modeled as binary events that
are statistically independent (Rao et al., 2009). These assumptions restrict the use of these methods to static, logic-based
modeling. Tree-based methods therefore are not suitable to describe influencing factors with more than two potential states
and make it difficult to represent the relationships among factors. In road accidents analysis some factors may have more
than two states, for instance, driver behavior and traffic conditions have a wide range of possible states. In addition, the rela-
tionships among factors contributing to an accident cannot be easily represented by means of logical gates. Thus, scenarios
expressed in tree-based methods are not suitable for road accidents analysis.

In complex systems such as the road networks, where humans and machine agents collaborate, the likelihood of commit-
ting an error by either party needs to be investigated. Based on this, there are two broad categories of accident analysis using
scenarios: the human related accidents and the machine induced accidents. In practice accident forecasting using scenarios
is often combined with other forecasting methods, taking into account possible variability in single scenarios as well as pos-
sible relationships between different scenarios. However, the main problem in scenario-based approaches is the lack of reli-
able techniques to automate the generation of sufficient set of scenarios to assess system’s safety (Gregoriades and Alistair,
2005). Several approaches have been proposed that have ended up with too many scenarios that drawn the safety assess-
ment process in excessive detail.

BNs have gain widespread attention as a method for analyzing and predicting accidents. They use scenarios which rep-
resent instantiations of variables in their causal network. In our previous work (Gregoriades et al., 2010) we investigated the
integration of an agent-based micro-simulation model with a BN to predict accident risk on roadways. Results from this
work shown that the tool could be used to predict safety critical sections on a road network. This method however could
only be applied on parts of the network due to the limitations of the micro-simulation model used. Other applications of
BN on road safety include Sandos (2005) work on BN crash prediction for roadway segments safety evaluation. Davis
(2006) work on the performance of BNs on accident reconstruction. Del et al. (2000) compared several algorithms for learn-
ing BN in the prediction of road accidents. Their model’s variables include: Annual Average Daily Traffic (AADT), section
length, number of lanes, surface width, maximum posted speed limit, and number of crashes per year.

Xu et al. (2010) used BN to establish complex relationship between the accident and casualties of accident as well as the
correlations among various causal factors. Hossain and Muromachi (2012) proposed a framework for the prediction of crash
on urban freeway segments using BN. They utilized a multinomial logit model to identify the influencing factors contributing
to crashes, while a BN was employed to predict the crash risk in real-time. The model was tested on two different express-
way segments in Tokyo. De-Ona et al. (2011) proposed a BN based method to predict the severity of accidents including min-
or, critical and fatal accidents. Based on the characteristics the accidents, factors contributed to accident severity including
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the type of accidents, driver age, lighting and numbers of injuries were identified by inference. Heng et al. (2008) utilized a
BN approach to analyze and predict index system based roadside safety. Zhu et al. (2009) proposed a BN based intersection
safety evaluation model that took into consideration expert knowledge. The model was successfully used to evaluate the per-
formance of an intersection without requiring accident statistics and traffic conflict data. Dias et al. (2009) utilized BN to
explore the relationship between the occurrence of accident and the level of congestion. Based on the speed, flow and event
data collected on eight redial Metropolitan Expressways, it was found that the chance of accident occurrence increased with
the increase of congestion. Similarly, a study by Dell’Acqua (2011) highlights the need to utilize traffic accident, traffic flow,
infrastructure and environmental data to identify and rank hazardous sections on roadways.

Other related work include the utilization of BNs to model road accidents and accordingly make inferences for accident
analysis (Simoncic, 2004). This work however is concentrated solidly on the development of the BN without providing evi-
dence of its performance. Work by Hu et al. (2004) also uses a probabilistic approach to predicting road accidents through
intelligent surveillance of vehicle kinematics. In the same vein Zhang and Taylor’s (2006a) utilize BN to quantitatively model
the causal dependencies between traffic events (e.g. incident) and traffic parameters. Using real time traffic data as evidence,
the BN update the incident probabilities. Their TRC algorithm has also been applied in freeway incident detection (Zhang and
Taylor, 2006b). In an attempt to deal with the limited traffic data, Murat (2011) reports an entropy-based back spot identi-
fication method. In his work geometrical and physical conditions, traffic volumes, average speeds and average accident rates
at around black-spots are considered as effective factors on occurrence of accidents. Entropy values are calculated using
these parameters while safety levels are classified in five groups based on calculated entropy values. Finally, software tools
in accident prediction, such as SafeNET2 (Software for Accident Frequency Estimation for Networks), use traffic flows and
geometric information to assess accident risk (TLR, 2007). However, SafeNET2 does not address the dynamic aspects of road
networks using simulation. Hence, their traffic flow estimates are generic.

4. Methodology

The proposed prototype road safety analysis method presented herein is based on the integration of DTA-based VISTA
simulator with BN technology for the quantification of accident risk index. One of the important contributing factors to acci-
dent risk is the traffic flow at roadway sections or locations. Therefore, it is essential to predict the traffic conditions of each
road section at different time intervals. To that end, the VISTA traffic simulator is employed for the following five reasons:
Firstly to estimate the DUE traffic flow conditions at a homogeneous roadway section or location for a 15-min time interval
of the day. Secondly, estimates of traffic flow per road section are integrated with accident data from historical records to
form the base-dataset for the development of the BN model that estimates accident risk. Thirdly, this methodology contrib-
utes towards normalizing accident rates that could occur at roadway sections, locations or movements under similar traffic
conditions. VISTA is a powerful DTA simulator that enables the prediction of traffic conditions using prior data of driver
dynamics and road network’s infrastructure. Therefore, the fourth reason for using VISTA is the prediction of future traffic
conditions under existing or new infrastructure changes, based on which the BN will be employed to produce estimates
of accident risk per homogenous roadway section, link, movement or location. The existence of this combined BN-traffic sim-
ulator allows transport agencies to design the transport network either in the short or long term in such a way to reduce the
occurrence of accidents. The main components of the VISTA DTA model as developed in Nicosia are listed below:

� The 15-min dynamic OD matrix. This is a matrix that defines the temporal relationships among origins and destinations
on the road network under study. This study utilizes a static OD matrix developed by the Cyprus Public Works Depart-
ment (CYPWD) long with historical traffic counts collected in 2009.
� Geographic Information System (GIS) and roadway geometry. The GIS was provided by the Cyprus Lands and Surveys

Department (CYLSD). The roadway geometry was compiled from CYPWD records and manual surveys of Nicosia, via Goo-
gle Earth and on site inspections.
� Traffic control data. Signal timing for 148 intersections, yield and stop control, speed limit and turn restrictions were pro-

vided by CYPWD.
� Bus data. Bus routes (28), schedules and bus stop locations were provided by CYPWD.
� Traveler information data. None available.
� Traffic flow characteristics data. Historical traffic counts and travel time studies were provided by CYPWD.

The proposed method can be generalized by a number of steps as illustrated in Fig. 1:

� Implement a simulation-model of Nicosia to predict the 15-min traffic flow characteristics per roadway section, link,
movement or location.
� Calibrate and validate model.
� Compile and integrate the infrastructural and traffic control properties from VISTA into an enhanced dataset used for the

development of the BN.
� Preprocess enriched dataset to reduce its dimensionality and eliminate inconsistencies and uncertainties.
� Develop BN topology using the enriched dataset along with domain knowledge
� Parameterize BN’s prior knowledge using historical road accident data and VISTA-generated traffic data were utilized.
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Fig. 1. Methodology.
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� Validate BN.
� Specify the minimum acceptable level of safety for the design under investigation.
� Accident risk index estimation. Start the integrated BN simulation process to assess the accident risk per roadway section,

link, movement or location. BN input in combination with prior BN knowledge is used to assess accident risk. Dynamic
input to the BN is provided by the DTA simulation on a step by step basis.
� Estimate the corresponding accident rate based on the estimated 15-min traffic flow rate.
� Normalize BN accident rate using traffic flow estimates from VISTA.

The developed VISTA model features a total of 517,514 OD trips that correspond to 622 OD pairs of passenger cars, 148
signalized intersections and a set of 28 bus routes. The topology of the implemented network along with its instantiation is
depicted in Fig. 2.
Fig. 2. Topology of the developed VISTA model for the Nicosia road network (right). Enactment of the model (left) with level of service expressed in
different colors.
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5. Overview of road accident influencing factors

Road accidents are influenced by a large set of parameters, some manifested same latent. Manifested parameters include:
traffic and weather conditions, along with vehicle and infrastructural properties. Latent parameters include: aspects relating
to human perception, decision making, cognition and psychology (Shinar, 2007). The following list depicts manifested con-
ditions under which accident could occur (Bartley, 2008). In our study we used a subset of these variables as depicted in
Table 2 in subsequent section.

Traffic flow rate (vehicles/unit of time, vehs/h). Number of vehicles per unit of time at the time of accident occurrence. This
parameter is known only in locations and roadway sections where traffic count sensors exist and are recorded at the time of
occurrence. A surrogate measure is the estimated traffic flow rate through the implementation of a traffic simulator. In this
application we utilized the VISTA DTA model to produce 15-min traffic volumes.

The vehicle speed (mi/h or km/h). The speed of the vehicles involved in the accident. This parameter is reported (not
always) in the police report.
Table 1
Cyprus police accident data characteristics.

Description Type Values

Global characteristics
Area Categorical 1:2
Police district Categorical 1:2
Residential area Categorical 1:2

Local characteristics
Traffic control Categorical 1:3
Road width Continuous [044]
Pavement width Continuous [07]
Diagram code Categorical 1:11
Conjunction type Categorical 1:8
Routes permitted Categorical 1:3
Barrier type Categorical 1:5
Break lane Categorical 1:4
Speed limit Continuous [10100]
Bus stop Categorical 1:2
Pedestrian crossing Categorical 1:5
Road description Categorical 1:3

Temporal characteristics
Month Categorical 1:12
Day Categorical 1:7
Time Categorical 1:8
Light conditions Categorical 1:5
Pavement status Categorical 1:2
Road works Categorical 1:2
Weather conditions Categorical 1:2

Accident characteristics
Action before accident Categorical 1:2
Number of vehicles Continuous [16]
Number of injured Continuous [17]
Hit and run Categorical 1:2
Main cause (Factor) Categorical 1:64
Second cause Categorical 0:5
Third cause Categorical 0:5
Fourth cause Categorical 0:5
Accident location Categorical 1:3
Type of event for main cause Categorical 1:4
Time for ambulance Continuous [055]
Vehicle sequence Categorical 1:5
Type of event for second cause Categorical 0:1

Driver characteristics
Age Categorical 1:4
Gender Categorical 1:2
Driver licence type Categorical 1:3

Car characteristics
Manufacture year Categorical 1:4
CC Categorical 1:10
Vehicle type Categorical 1:5
Vehicle licence Categorical 1:2
Vehicle worthiness certificate Categorical 1:2



Table 2
Reduced set of variables used in BN topology along with corresponding variables states that were identified after preprocessing.

Variable name Variable states

Day 1 for Sunday, 2 for Monday, 3 for Tuesday, . . ., 7 for Saturday
Time 1 for 11 am–1.59 pm, 2 for 2–4.59 pm, 3 for 5–7.59 pm, 4 for 8–10.59 pm, 5 for 11–1.59 am, 6 for 2–4.59 am, 7 for 5–7.59 am, 8 for

8–10.59 am
Factor 1 for mental state of driver: old fields 1–7

2 for driver inability old fields 8, 10–11, 16–17, 26, 31–33, 35
3 for carelessness old fields 9, 12–15, 18–25, 27–20, 34, 36–42
4 for vehicle fault old fields 43–52
5 for environmental cause old fields 53–66

Traffic control 1 for none and traffic signs out of order, 2 for stop sign, give way sign and roundabout, 3 for police and traffic signals (both traffic
signals and police as well as flashing traffic signals do not appear in the records

Road Width 1 for <7 m, 2 for 7–10 m, 3 for >10 m
Diagram code Fields 1–10 car-to-car, namely 1 for nose to tail, 2 for overtake, 3 for frontal, 4 for side, 5 for one car stationary, 6 for angle, 7 for

runoff, 8 for object, 9 for other, 10 for pedestrian involved, 11 for other
Junction type 1 for intersection of two or more roads, 2 for T-junction, 3 for staggered junction, 4 for Y-junction, 5 for roundabout, 6 for slip road, 7

for other, 8 for no junction
Barrier 1 for none, 2 for single broken, 3 for single or double continuous single, 4 for island (ghost island, with or without physical barrier), 5

for combination of the above
Road works 1 for yes, 2 for no
Bus stop 1 for yes, 2 for no
Light 1 for daylight, 2 for dawn, 3 for dusk, 4 night-street lit, 5 for night-street unlit
Road

description
1 for straight and flat, 2 for straight and not flat, 3 for curved

Pavement
type

1 for good, 2 for bad

Weather 1 for dry, 2 for other
Accident Type 1 for fatal, 2 for serious, 3 for light and damages only
Speed 1 for high 2 for low
Traffic flow 1 for high, 2 for average, 3 for low

34 A. Gregoriades, K.C. Mouskos / Transportation Research Part C 28 (2013) 28–43
The distribution of the speed (mi/h). The distribution of the speed during the 15-min time interval that the accident
occurred during the day. This parameter can be estimated from traffic flow detectors at some locations or they can be
estimated through a traffic simulator. In this study the distribution of the speed during a 15-min time interval was estimated
through the VISTA DTA model.

Acceleration or deceleration (mi/s2 or km/s2). The acceleration or deceleration of the vehicle(s) involved in the accident.
This parameter was not utilized in the study yet it is a very important one in the characterization of the conditions under
which an accident occurs. This parameter can be estimated through Video Image Processing (VIP) where video cameras
are installed for such a purpose. The best methodology in determining the acceleration/deceleration is through GPS enabled
devices. As more vehicles and/or drivers are equipped with GPS-enabled devices such as cell phones or in-vehicle devices
then it will become easier to produce estimates of the vehicles’ speed/travel time, acceleration and deceleration. A calibrated
microscopic traffic simulator can be utilized to estimate the distribution of the acceleration/deceleration for a specific time
interval during the day. The implementation of calibrated microscopic traffic simulators throughout a transportation net-
work is strongly recommended to produce estimates of the state of the system throughout the day in combination with
DTA models, whereas, the DTA produces the paths and the micro-simulator the traffic flow propagation. This parameter
was not utilized in this study.

Gap acceptance (time headway (s)). The gap available at an adjoining lane during the occurrence of an accident. This
parameter is rarely known unless a VIP sensor is in place. Where such a sensor is present then the distribution of the gaps
used by travellers may be estimated. These distributions throughout the network could then be used to calibrate a micro-
scopic traffic simulator. As previously mentioned we did not utilize a microscopic traffic simulator for this study.

Car following headway (s). The car following headway during a rear-end accident. This parameter is usually estimated
from police reports through the use of the skid marks on the pavements (if such marks are available). However, the prolif-
eration of the use of antilock braking systems makes this methodology questionable as many drivers do not know how to use
them properly and the police report may not offer such information (whether an ABS is in place). A calibrated traffic simu-
lator may be utilized to produce a distribution of the car following headways. This parameter was not utilized in this study.

Traffic control parameters. The traffic control parameters (e.g. signal timing) at the time of the accident is rarely known or
reported. The model used in this study utilized the average traffic signal timing parameters. A calibrated microscopic traffic
simulator models the traffic flow parameters in greater detail and produces more robust results. The BN takes into consid-
eration whether we have signalized or non-signalized intersections. Furthermore, it also includes the speed limit.

Environmental, weather and pavement conditions. These are included in the police report and are taken into account via the
BN.

Driver type. The Cyprus police records include various properties of the drivers involved in an accident, such as age and
gender. The driver aggressiveness is an additional important parameter that is not included in the police report. Undoubtedly
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however, it constitutes an important factor that lead to accidents. It is usually estimated through traffic flow studies of the
transport network, which can then be used to calibrate a microscopic traffic simulator. The use of GPS data could make the
estimation of this parameter more accurate and less costly.

6. Bayesian Networks

BNs constitute the backbone of our accident prediction method. They are directed acyclic graphs of causal influences,
where the nodes represent random variables, and the arcs represent (usually causal) relationships between variables. The
two main components of BN are the causal network model (topology) and the conditional probability tables (CPTs). The
model causal relationships are expressed as directed acyclic graphs. Variables are denoted by nodes in the model and can
have any number of states, so the choice of measurement scale is left to the analyst’s discretion (Kjaerulff and Madsen,
2008). Causal relationships among variables are described by arcs among nodes. CPTs describe the prior knowledge of the
problem domain and explicitly specify the causal dependencies in terms of conditional probability distributions (Jensen,
2001). Parameterising the CPTs is often the most demanding task in BN development, as the number of probabilities can
be counted in hundreds or even thousands (Druzdzel and Van-der-Gaag, 2000). CPTs can be inferred from data when avail-
able or subjectively specified by experts. The former is more objective, however, it is unlikely to have all the data needed to
specify all CPTs in a model. Hence, the use of experts is sometimes imperative. BNs can be used in two main types or reason-
ing: bottom-up/diagnostic and top-down/predictive. The former infers the most likely cause given evidence of an effect.
While the latter, ‘‘top down’’, deduces the probability that a certain cause would have given a specific effect.

Formally, a BN encodes the joint probability distribution over a set of n variables X = {X1, . . .,Xn} and escapes from the com-
binatorial explosion problem. Therefore, let us denote by Xi a random variable, and by Pi the set of parent nodes of Xi. Then
the joint distribution of X can be expressed as the product of the conditional distributions of each variable given its parents,
where x represents an instantiation of X, pi an instantiation of Pi, and xi denotes the state of Xi:
pðXÞ ¼
Yn

i¼1

pðxi pij Þ ð1Þ
The conditional probabilities described by Eq. (1) are presented in the CPT. When the topology and CPTs have been com-
pleted, Bayes’ theorem can be used to diagnose a cause given an effect or the chain rule (1) to predict an effect given a num-
ber of causes. The theorem is shown in:
pðxi=xjÞ ¼
pðxj=xiÞpðxiÞ

pðxjÞ
ð2Þ
where p(xi/xj) = posterior (unknown) probability of xi given xj; p(xj/xi) = prediction term for xj given xi; p(xi) = prior (input)
probability of xi; p(xj) = input probability of xj or, less formally:
Posterior Probability ¼ Likelihood � Prior Probability
Evidence

ð3Þ
The example in Fig. 3 shows two influences on accident risk (AR), namely, traffic flow (TF) and traffic control (TC). Let us
denote by W the AR, M the TF, and S the TC. Their corresponding states are described by w, m and s respectively. The variables
can have any number of states, so the choice of measurement scale is left to the analyst’s discretion. Let us denote by nW, nM

and nS the number of states for W, M and S respectively. In the following sections, we assume that the variables can take
three discrete states (nW = nM = nS = 3), namely, high (h), medium (m), and low (l). Therefore, based on the above example,
to diagnose (bottom-up) the probability that traffic flow is mj given that we have evidence that accident risk is wk, we
use the Bayes’ rule:
pðmj wkj Þ ¼
pðwk mj

�� ÞpðmjÞ
pðwkÞ

ð4Þ
In predictive reasoning the chain rule is applied to calculate the likelihood that accident risk is wk, given evidence of traffic
flow is mj and traffic control is si:
Traffic Flow Traffic Control

Accident Risk

Parent nodes

Child node

Fig. 3. Example BN topology.
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pðsi;wk;mjÞ ¼ pðsiÞpðwk sij ;mjÞpðmjÞ ð5Þ
Input evidence values are propagated down the network, updating the values of other nodes as explained above. The net-
work predicts the probability of inquiring variable(s) being in particular state(s), given the combination(s) of evidence en-
tered. BN models are extremely computation-intensive when the topology and the variable states increase. Recent
evidence propagation algorithms, however, exploit graphical models’ topological properties to reduce computational com-
plexity (Pearl, 1988, 2009). These are used in several commercial inference engines such as HUGIN (Jensen, 2001). One lim-
itation of BNs is that they have to conform to a strict hierarchy since cycles lead to recursive and nonterminating propagation
of probabilities by the algorithm. This imposes some compromises in modeling influences, which can be partially overcome
by introducing additional input nodes to model cyclic influences, although this increases complexity of the network and the
control process for the algorithm.
7. Modeling accident risk in BN

For the development of the accident risk BN it was imperative to firstly identify the model variables and their states. Find
dependencies among them and finally encode the prior knowledge that formally expresses the causal influence that they
have between them in the CPTs. The BN model was mainly developed using machine learning through combination of acci-
dent data from the Cyprus Police and traffic data generated with VISTA. Initially the two sets of data were not related with
each other. Hence, important information that significantly affects accident risk, such as, traffic flow, speed and road infra-
structure, could not be used to develop the BN model. Therefore, to enrich the accident records dataset with additional infor-
mation, the VISTA simulator was used to generate traffic flow data for each accident point. To obtain information regarding
the infrastructural properties at each accident point, geospatial data of accidents was utilized on a GIS platform. These were
subsequently imported on VISTA (Fig. 4) to obtain details of the infrastructure at each point. The mapping between the lat-
itude–longitude coordinates of accidents and VISTA links was achieved through the use of the Euclidian Distance metric. This
helped to associate accidents coordinates with VISTA links. Once this mapping was achieved additional dynamic information
from VISTA was identified for each accident record. These include: traffic volume, speed and infrastructure of vehicles. The
mapping between VISTA data and accident records was achieved by linking temporal information of each accident record
with VISTA traffic results based on the simulation time and link ID. The enriched dataset, enabled the specification of the
BN variables’ causal relationships and the corresponding CPTs.

The accident dataset covered all accidents occurred in the Nicosia area from 2002 until 2008 and comprised over 9000
records. Each record consisted of 43 (six continuous and 37 categorical) input parameters covering global, local, temporal,
accident, driver and car characteristics collected at the site of the accident by the police officers, eye witnesses and the in-
volved parties (Table 1). Each record was associated with a single categorical output parameter pertaining to accident sever-
ity, namely light, severe and fatal, as evaluated by the police officer at the site of the accident. The parameter ‘‘factor’’ which
Fig. 4. A sub-model of the Nicosia road network with traffic accidents as overlaid dots on VISTA Java GIS.



Fig. 5. Learned BN topology. Circled nodes indicate new variables parameterised using simulated results from VISTA.
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refers to the driver’s state among others, is defined by police officers at accident scene and is based on observable informa-
tion such as, evidence of alcohol, drug use, sudden illness speeding, along with observable environmental causes.

Dataset pre-processing involved four steps (a) replacement of missing and erroneous parameter values (e.g. falling out-
side the acceptable range of each parameter) of data records with the mean value of other (assumed correct) records of the
same parameter in dataset using MATLAB, (b) grouping neighboring or related values of multi-valued categorical parameters
so as to have a manageable number of intelligible as well as regular categories per parameter (Table 2) (c) converting con-
tinuous variables into categorical when applicable and (d) eliminating parameters that were not significant for this study
based on domain knowledge.

Statistical analysis relating the 43 input parameters (independent variables) to accident type (dependent variable) re-
vealed correlation coefficient values between the input and the output variables. This in combination with domain knowl-
edge helped to reduce the number of variables used for BN model development. Results from this process, produced a
dataset of 15 variables. These were augmented with 2 extra variables, speed and traffic flow (Table 2) that were obtained
from the traffic simulation data. This augmented dataset formed the baseline for learning the BN topology and the corre-
sponding BN CPTs. The former was achieved using the Necessary Path Condition (NPC) algorithm (Spirtes et al., 2000) that
is based on constraint-based learning. The basic idea is the generation of the BN topology using statistical tests for
conditional independence. The machine learning algorithm used for CPT parameterization is Expectation Maximization
(EM) (Jensen, 2001). EM is a robust algorithm that enables learning of BN model parameters from incomplete data. In
essence, EM algorithm is a method of finding the maximum likelihood, based on unobserved latent variables. EM is an iter-
ative method which alternates between performing an expectation (E) and maximization (M) step. In the E step, an expected
value of the log likelihood is calculated based on an estimation of the unobserved data, while in the M-step, the parameter
that can maximize the log likelihood is found. The EM steps improve the log likelihood while iterating and achieve an
optimal when it converges. The EM algorithm estimates the parameters of BN using all data entered into the domain. EM
terminates when one of two stopping criteria is met. Either an upper limit on the number of iterations or the improvement
in log-likelihood is less than a specified threshold. The EM algorithm is part of the HUGIN tool that we used to develop the BN
model. Upon completion of the BN learning the topology of Fig. 5 emerged.
8. BN model validation

To estimate the accuracy of the developed BN model, fivefold cross validation was performed.
Cross validation is used to measure the performance of models that address problems with one target variable. To mea-

sure this you test the model on a testing set which has not been used as part of the training. This will give you an indication
of how effective your model will be for the problem at hand. If data is sparse, then k-fold cross validation is preferred.
Therefore, the accident dataset was randomly partitioned into five folds of equal number of records. Subsequently, and
for each fold, four of the sets were employed for training the model while the remaining set was reserved for testing. Pre-



Fig. 6. ARA analysis results.
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diction accuracy was calculated by the weighted average of the test results of the five folds. The validation was performed
using the Hugin tool. Overall, the results of the validation process demonstrated that the BN model can predict accidents
with 81% detection rate.

An additional validation study, namely, Attribute Relevance Analysis (ARA) sought to evaluate the relevance of input vari-
ables with the target variable, i.e. accident type. ARA (Fig. 6) was performed using the Envisioner data mining tool to com-
pute the relevance between each causal factor to accident type (Gregoriades et al., 2003). The relevance of variables to
accident type was compared against the learned conditional probability that emerged from EM algorithm and the posterior
probabilities computed by the BN with the independent instantiation of each leaf node variable. Results highlighted a high
correlation between the relevance of certain variables to the target variable and the causal effect of the same variables to the
target variable. This helped to verify that assumptions from the road safety domain were correctly modeled in the BN.

The fact, however, that traffic volume is based on simulated results, biases the outcome of the validation. Therefore, an
additional validation study needs to be performed to verify that the model performs well in realistic settings to improve
external validity.
9. The Road Safety Assessment tool

The Road Safety Assessor tool that emerged from the integration of VISTA with BN technologies is composed of the fol-
lowing parts: the BN engine, the accident risk assessor, the VISTA simulator, the data pre-processor that incorporates the
scenario generator, the results analyzer and the visualizer. Fig. 6 depicts these along with the subcomponents of the VISTA
technology. The tool was developed using a component-based software engineering methodology. With the initial specifi-
cation of the system requirements captured, we proceeded in the identification of suitable software components that
matched the initial system requirements. These components were subsequently integrated to implement parts of the sys-
tem’s functionality. In particular the Bayesian inference engine and the visualization components were selected after thor-
ough investigation. The glue-code that enabled component integration was implemented in Java. The risk assessor quantifies
accident type using a Bayesian inference engine that utilizes the probabilistic model of accident risks. Input to the BN asses-
sor is categorized into static and dynamic. The former is obtained from the VISTA database and the latter is the output of the
VISTA simulation.

Input to the accident risk assessor is organized in the form of scenarios. An input scenario to the BN assessor is defined by
the static and dynamic properties of each road section. Static information is obtained from the VISTA database and in com-
bination with the dynamic input from the simulator provides the baseline for generating a number of plausible test scenarios
for each section. Generated scenarios are executed by the risk assessor to quantify the probability of accident. The scenario
generator is responsible for generating plausible scenario variations to stress-test the safety performance of the road net-



Fig. 7. The system architecture (above) and information flow among system components.

Fig. 8. 15-min. traffic flow rate (vehs/h) for link 6, 9, 12, 17 versus 15-min. time interval. Horizontal lines designate the threshold values based on which the
discretization of the variable on low, average and high state in BN terms.
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work. The generation of scenarios is based on the method developed by Gregoriades (2006). The visualizer processes the re-
sults and depicts these to the user graphically. An overview of the tool’s information flow is depicted in Fig. 7.

Input scenarios are propagated down the BN topology to produce the posterior probability of accident risk per scenario.
The integration of the VISTA with the BN model was realized through asynchronous data interchange. To establish commu-
nication between VISTA and the risk assessor it was imperative to pre-process VISTA’s output data prior to being utilized by
the BN in the risk assessor. Specifically, VISTA variables are continuous by nature, hence, had to be converted into categor-
ical/discrete to be processed by the developed BN that used only discrete nodes. Hence, it was necessary to discretise the
output from VISTA prior to instantiating the BN model. For the discretisation process it was necessary to refer to domain
experts that specified the cut-off values for each variable. Specifically, for traffic flow, three states were defined, namely,
low, average and high. The first corresponding to less than 100 vehicles per 15 time interval, the second to less than 350
vehicles and the last to greater than 350 vehicles (Fig. 8). These are used to parameterize traffic flow.
10. Results

Results from the accident risk assessor were used to calculate the accident risk index of each road section. Each road seg-
ment was evaluated against a number of BN scenarios each producing an accident probability. Road segments were labeled
accident prone if the BN accident type probability of any variable state was above a pre-specified threshold value. Fatal acci-
dents were given more weighting than serious and light and hence translated in increased absolute numbers. BN scenarios
that fell below the threshold value were ignored. The number of scenarios that were above the threshold were used to cal-
culate the accident frequencies for each segment. This enables the safety engineer to alter the granularity of the analysis by
altering the threshold value. Scenarios were defined on the fly by the scenario generator component. Each segment is eval-
uated against scenarios that describe traffic condition at different time intervals and driver profiles. To produce the accident
risk index it was imperative to normalize the number of accidents that were predicted by the BN with the traffic volume per
time interval, for each road section. Following this, the developed system uses a systematic approach that utilizes the traffic
volume estimates from the VISTA simulation and the accidents predicted using the BN risk assessor. Traffic volume acts as a
normalizing factor for the number of accidents predicted using the BN risk assessor. The normalization of the accident re-
cords is of principal importance to traffic safety analysis. The accident rate is defined as the number of accidents which have
occurred at a roadway section or location per Million Vehicles Miles (MVM) traveled. Traditionally, this parameter is esti-
mated using the Annual Average Daily Traffic (AADT). This however constitutes a crude estimate and provides limited accu-
racy. In this study, the accident risk index is defined as:
Accident risk indexðARIÞ ¼ Number of accidents predicted by the BN=estimated traffic flow rate
per time period of the day; from DTA:
Therefore, the ARI for all accidents occurred was estimated through the use of the VISTA DTA model. This parameter needs
to be estimated for each season based on local traffic conditions, to account for fluctuations in demand. This would then yield
to a set of DTA models for each statistically different ‘‘traffic’’ season. Similarly, a different DTA-traffic simulation model
could be determined for Saturdays and Sundays and any special days that have statistically different traffic patterns through-
out the 24-h time period.

Given that the traffic flow rate fluctuates throughout the 24-h time period, an analysis was conducted to divide the time
period of the day into distinct traffic flow periods that have common traffic flow characteristics (volume and speed). The esti-
mated VISTA DTA 15-min traffic flow rates for links 6, 9, 12, 17 are depicted in Fig. 8 for a typical 24-weekday. Fig. 1 dem-
onstrates that different links peak at different time periods of the day. Similar estimates of traffic flows are utilized to train
the BN model firstly as explained, and subsequently to instantiate the BN during execution mode, at different time intervals,
to produce the accident probabilities per road section/point.

Results gave rise to road sections that inherently have high accident risk. These are the network’s black spots. An illus-
tration of the preliminary results produced by the method is depicted in Fig. 9. This figure illustrates a subset of the results
and indicates that sections with IDs, 3, 21 and 47 have the highest accident risk index. This informs the safety engineer
regarding the safety performance of a road network and accordingly stresses the need for appropriate countermeasures
Sections with the highest Accident Risk Index

Fig. 9. Links on the road network with highest accident risk index.
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to alleviate the problem. These could then be implemented in the simulation model, at which point the process is repeated to
verify that the problem is eliminated prior to being implemented.
11. Discussion

The method described herein illustrates a novel approach to quantifying road safety using probabilistic inference and DTA
simulation. Integration of VISTA with BN, as presented, enables the combination of static, dynamic, known and uncertain
information in accident risk quantification. The prototype system developed herein, combines state of the art technologies
from traffic simulation and accident risk assessment. Integration of these provides the decision makers with the necessary
means to perform a holistic safety analysis. The method escapes from the problem of traffic data shortage that limits most
traditional approaches through the use of DTA simulation. VISTA provides traffic volume data estimates for all road sections,
links and movements of the network on a 24 h basis at the desired time interval. For this study a 15-min time interval was
used. Traditional approaches to black spot identification use historical records of accident occurrences to find sections with
high accident frequency. These approaches, however, do not provide any means of normalizing the data and, hence, could
yield results that have limited scope. Their main limitation is in dealing with changing road infrastructure, therefore, histor-
ical records of accidents alone cannot be used to identify black spots. The use of BN technology can alleviate this problem
since it enables the utilization of distilled knowledge of accident causality embedded in the model, and can provide valuable
estimates of accident probability in situations where past accident data is not available, such as new road sections.

This methodology is implemented as a prototype to demonstrate the methodology rather than an operational model that
requires substantial calibration of the underlying DTA model and/or traffic simulator. Once a model is properly calibrated
then the traffic flow rate estimates will correspond closely on the actual conditions that the group of crashes that occurred
at each roadway segment, link and movement, yielding more accurate crash rate estimates and consequently a better nor-
malizing methodology rather than the AADT.

BNs have been used in road safety analysis to describe and quantify the causal relationships between factors leading to
accidents. However, the instantiation of BN with improved assessments of traffic conditions through DTA simulation makes
this work novel. BNs gained widespread acceptance with the introduction of computational algorithms that enabled their
exploitation. The main limitation of BNs is that they do not provide a direct mechanism for representing temporal depen-
dencies in a problem. Given that many real problems are complex and changeable over time, static BNs are inadequate. Many
improvements have been proposed to deal with this limitation, such as, representing probabilities as functions of time or
considering each node as composing of two parts, i.e. a state value of a random variable and a time interval associated to
the change of the state. Dynamic Bayesian Networks (DBNs) tackle this problem by using many temporal slices which main-
tain multiple copies of nodes and connections of the same static network topology, and oriented arcs which connect vari-
ables in different time-slices of the same BN topology. However, such formulations require exogenous knowledge of how
the probabilities or states vary over time. Despite that, the benefits of DBN over static are considerable in certain situations.
Therefore, considering the possibility that some observations lose their relevance or importance with the passage of time in
the simulation, part of our future directions includes the application of DBN paradigm to the accident risk assessment
algorithm.

We also note that while the current version of VISTA incorporates a mesoscopic traffic simulator. A mesoscopic traffic
simulator does not have the capability to produce the detailed traffic flow conditions under which accidents are occurring.
Future research directions include the replacement of the mesoscopic traffic simulator with a microscopic traffic simulator.
This will produce estimates of the DUE paths and the associated traffic flow characteristics at the microscopic level (traffic
flow rate, speed distribution, acceleration/deceleration speed distributions, gap acceptance distribution, car following head-
way distribution, other) per time interval of the day. Alternatively, given the slow convergence of DTA models the last iter-
ation of a DTA model could be send to a microscopic traffic simulator to produce the corresponding traffic flow parameters.
Subsequent future research plans, include the installation of a traffic flow monitoring system at strategic locations through-
out the transportation network to calibrate the DTA-micro model on a daily basis thus reducing the bias of one DTA-micro-
simulator representing daily and seasonal traffic patterns. Continuously calibrate the DTA-micro simulation model either
offline or in real time. Utilize the calibrated model to produce estimates of the traffic flow conditions based on various infra-
structure changes. Integrate the DTA-micro model with the BN to produce estimates of accident risk based on proposed
changes of the transport network.

Ultimately, we envision the establishment of a continuously calibrating DTA model integrated with a microscopic traffic
simulator producing traffic flow characteristics of accident occurring in a network, which could be utilized for the incremen-
tal learning of the BN model’s prior knowledge.
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