
Science and Information Conference 2013
October 7-9, 2013 | London, UK

328 | P a g e
www.conference.thesai.org

Enhanced TSFS Algorithm for Secure Database

Encryption

Hanan A. Al-Souly, Abeer S. Al-Sheddi, Heba A. Kurdi

Computer Science Department, Computer and Information Sciences College

Imam Muhammad Ibn Saud Islamic University

Riyadh, Saudi Arabia

Abstract—Security of databases has become increasingly

crucial in all application areas. Database encryption is an

important mechanism to secure databases from attacks and

unauthorised access. The Transposition-Substitution-Folding-

Shifting encryption algorithm (TSFS) is a symmetric database

encryption algorithm that uses three keys with an expansion

technique to provide high security: it improves the efficiency of

query execution time by encrypting the sensitive data only.

However, it applies merely for the alphanumeric characters. This

paper extends the data set of the TSFS encryption algorithm to

special characters as well, and corrects substitution and shifting

processes by providing more than one modulo factor and four 16-

arrays respectively in order to avoid the error that occurs in

decryption steps. Experiment results show that enhanced TSFS

encryption algorithm outperforms Data Encryption Standard

algorithm (DES) and Advanced Encryption Standard algorithm

(AES) in terms of query execution time and database added size.

Keywords—Encryption; Database Security; Transposition;

Substitution; Folding; Shifting

I. INTRODUCTION

The tremendous development of technology and data
storage leads organisations to depend on database systems. The
organisations store huge amounts of data in the databases in
safe situations in order to retrieve them in a fast and secure
way. The damage on the data can happen if it suffers from
attacks and unauthorised access. In the presence of security
threats, the database security is becoming one of the most
urgent challenges; thus, in order to achieve a high level of
security, the complexity of encryption algorithm should be
increased, and at the same time taking care in regard to
database efficiency, ensuring performance is not affected.

There are many research studies in database security field;
some of these research studies have efficient implementation.
Also, many encryption algorithms have been proposed. Some
of them have features but need extending to further
development; one of these is the Transposition, Substitution,
Folding and Shifting TSFS algorithm, known as the TSFS
algorithm [1]. The TSFS algorithm provides a high degree of
security by using a number of features; however, it supports
only numbers and alphabetic types that are not enough to
protection different types of sensitive data.

This paper provides a secure and efficient encryption
method that encrypts only sensitive data without using special
hardware. It enhances TSFS algorithm by extending the data
set of the TSFS encryption algorithm to special characters as

well, and corrects the substitution and shifting processes by
providing more than one modulo factor and four 16-arrays
respectively in order to avoid the error that occurs during the
decryption steps. Moreover, this paper draws a comparison
between the enhanced TSFS algorithm (ETSFS) and two other
famous encryption algorithms, namely Data Encryption
Standard (DES) and Advanced Encryption Standard (AES)
algorithms, and evaluates their performance in terms of query
execution time and database added size.

The remaining parts of this paper are organised as follows:
Section II reviews existing work on database encryption
techniques; Section III introduces the ETSFS algorithm and
explains its procedure, whilst Section IV introduces the
implementation of ETSFS algorithm and suggested structure;
Section V presents a comparative study between the
algorithms, evaluates performance, and reports and discusses
results. Finally, Section VI concludes with a summary of
contributions, and makes suggestions for future research work.

II. RELATED WORK

 Due to the important role that encryption techniques
play in securing database systems, numerous algorithms have
emerged with different techniques and performance. Bouganim
& Pucheral proposed a smart card solution to protect data
privacy, where database owners can access the data using a
client terminal supporting by smart card devices [2]. This
proposed solution is considered a secure and effective solution,
but is complicated and expensive [1]. Database encryption
greatly impacts database performance because, each time a
query runs, a large amount of data must be decrypted.
Therefore, [3] suggested that encrypting sensitive data can
provide only the security needed without affecting the
performance. In [1], [4] and [5] encryption algorithms were
proposed depending on encryption of sensitive data only. Kaur
et al. proposed a technique to encrypt numeric data using only
a fixed data field type and length [4]. However, this algorithm
does not support the encryption of character data. Agrawal et
al. [5] also proposed an encryption scheme for numeric data
with an important feature that allows queries or any
comparison operations to be applied directly on encrypted data
sets without decrypting them. The scheme uses the indexes of
database over encrypted tables, but is only applied to numeric
data. Additionally, it has not investigated key management.

The DES algorithm is one of the famous encryption
algorithms that use a symmetric key to change 64-bit of a plain
text into 64-bit of a cipher text, using 56-bit of the key and 16

Science and Information Conference 2013
October 7-9, 2013 | London, UK

329 | P a g e
www.conference.thesai.org

rounds. [6]. It is now considered insecure for many
applications; this is mainly due to the size of key, which is too
small [7]. The work in [8] presents the AES algorithm as a
replacement for the DES algorithm as a standard for data
encryption. It is a symmetric-key algorithm that takes 128-bit
for the plain text and 128, 192, or 256-bit for the key. The
length of the key specifies the number of rounds in the
algorithm.

Finally, Manivannan & Sujarani [1] proposed efficient
database encryption techniques using TSFS algorithm, which is
a symmetric-key algorithm. Its main features include using
transposition and substitution ciphers techniques that are
important in modern symmetric algorithms as they have
diffusion and confusion. Moreover, it encrypts only the
sensitive data, thus limiting the added time for encryption and
decryption operations. The algorithm utilises three keys and
expands them into twelve sub-keys using the key expansion
technique to provide effective security for the database. In
order to improve the security, this algorithm uses twelve
rounds and two different keys in each round. However, the
TSFS algorithm applies merely to alphanumeric characters; it
does not accept special characters or symbols. More details
about TSFS algorithm are provided in [9], which builds a
system that generates different numbers of secret keys based on
TSFS algorithm along with other algorithms to ensure high
security level of encrypted data.

III. EXTENDED TSFS ALGORITHM (ETSFS)

 The main objective of this paper is to enhance the
TSFS algorithm [1] and accordingly to provide a high security
to the databases whilst limiting the added time cost for
encryption and decryption by encrypting sensitive data only.
The ETSFS algorithm can encrypt the data that consists of
alphabetic characters from A to Z, all numbers and the
following symbols: (*, -, ., /, :, @ and _). ETSFS algorithm is
a symmetric encryption algorithm, meaning each
transformation or process must be invertible and have inverse
operation that can cancel its effect. The key also must be used
in inverse order.

ETSFS algorithm uses four techniques of transformations,
which are transposition, substitution, folding and shifting. Fig.
1 presents the encryption algorithm, where the decryption
algorithm reverses the encryption algorithm. The following
sections describe the four techniques:

A. Transposition

Transposition transformation changes the location of the
data matrix elements by using diagonal transposition which
reads the data matrix in the route of zigzag diagonal starting
from the upper left corner after getting the data and pads it with
*s if it is less than 16 digits [1]. Fig. 2 shows the transposition
process when the data entered was: 6923@domain.Sa. Fig. 3
shows the transposition algorithm at the encryption side.

Fig. 1. Encryption algorithm.

Fig. 2. Transposition example.

Fig. 3. Transposition algorithm.

Algorithm transposition (Matrix data)

Pre: data is 4x4 matrix that contains the data should be encrypted.
Post: data is data after changing symbols location.

 Matrix temp;

 temp[0,0] = data[0,0];

 temp[0,1] = data[0,1];

 temp[0,2] = data[1,0];

 temp[0,3] = data[2,0];

 temp[1,0] = data[1,1];

 temp[1,1] = data[0,2];

 temp[1,2] = data[0,3];

 temp[1,3] = data[1,2];

 temp[2,0] = data[2,1];

 temp[2,1] = data[3,0];

 temp[2,2] = data[3,1];

 temp[2,3] = data[2,2];
 temp[3,0] = data[1,3];

 temp[3,1] = data[2,3];

 temp[3,2] = data[3,2];

 temp[3,3] = data[3,3];

data = temp;

 return data;

End transposition

Algorithm encryption (String data,

 Array[12] keys)

Pre: data is plain text.

 keys is array that contains 12 4x4-key matrices.

Post: encryptedData is data after encrypting.

 Matrix[4,4] dataMatrix;

 String encryptedData;

 if (data length < 16)

 padd data by adding *'s;

 else if (data length > 16)

 cut the data after 16;

 end if

 dataMatrix = data;

key = expandKeys (keys);

 for (int i=0; i<12; i++)

 dataMatrix = transposition (dataMatrix);

 dataMatrix = substitution (dataMatrix, keys(i),

keys((i+1)mod 12));
 dataMatrix = folding (dataMatrix);

 dataMatrix = shifting (dataMatrix);

 end for

 encryptedData = dataMatrix;

 return encryptedData

End encryption

Science and Information Conference 2013
October 7-9, 2013 | London, UK

330 | P a g e
www.conference.thesai.org

B. Substitution

The second technique is the substitution transformation. It
replaces one data matrix element with another by applying a
certain function [1]. If the element represents alphabetic
character, it then will be replaced with another character. If the
element represents a number, it will be replaced with a number,
and if it represents a symbol it will be replaced with a symbol.

The encryption function E for any given letter x is:

 E(x) = (((k1+p) mod M +k2) mod M (1)

where p is the plain matrix element, k1 and k2 are the keys
elements that have the same position of p, and M represents the
size of modulo operation. The ETSFS algorithm takes three
values for the modulus size instead of one value as in the TSFS
algorithm. The substitution process described in [1] has
confusion. Confusion occurs if the data is composed of
alphabetic and numeric digits, and the modulus size (M) will be
26 for any digit, as illustrated in the next example. If one
element in the data was 4, k1=5, k2=5, M = 26, the result of the
substitution process is then 14, as the paper presents. This
result causes two problems: the first problem is that the length
of the data will be changed and increased, such as when the
plan text size is 16 digits, for example, the cipher text size will
be 17 digits if one element only changes, which contradicts the
TSFS algorithm's feature. The second problem is, since the
inverse operation decrypts the data digit by digit, it will then
deal with each element in the cipher text individually (1 then
4). As a result, the decrypted data will be different from the
data that have been encrypted. Therefore, the ETSFS algorithm
gives M the following values: 26 if p is alphabet, 10 if p is
number and 7 if p is symbol.

The decryption function D is as follows:

 D(E(x)) = (((E(x) – k2) mod M) – k1) mod M (2)

Since most of the programming languages, such as Java
and C++, deal with the modulus as the remainder of an integer
division, some of the results may have minus sign and this will
create a problem as there is no data with a minus sign
representation. Accordingly, one more step has been added to
the ETSFS algorithm implementation to determine whether the
result includes the minus sign. Subsequently, the following is
applied:

 D(E(x)) = M - |D(E(x))| (3)

Fig. 4 shows the result of applying substitution on the
output of the Transposition example and Fig. 5 shows the
substitution algorithm at encryption side.

C. Folding

The Folding transformation shuffles one of the data matrix
elements with another in the same entered data, like the paper
fold. The data matrix is folded horizontally, vertically and
diagonally [1]. The horizontal folding is done by exchanging
the first row with the last row. The vertical one is done by
exchanging the first column with the last column. The diagonal
is done by exchanging the inner cells, the upper-left cell with
the down-right cell and the upper-right cell with the down-left
cell. Fig. 6 shows an example of folding whilst Fig. 7 shows
the folding algorithm at encryption side.

D. Shifting

The last part of the algorithm is the shifting transformation,
which provides a simple way of encrypting using 16-array
element of numeric digits to change a letter with another. Each
element of the array must contain the numeric representation of
the data. Each digit must appear only once in each element of
the array. The digits can appear in any order [1]. In the shifting
process, the algorithm replaces each element in the data matrix
by its position within its array element. The ETSFS algorithm
uses four 16-arrays instead of one array as TSFS algorithm
uses, because the described shifting process in [1] has
confusion. For example, if an element in the plain text is 4 and
its position within array is 15, the shifting process in [1] then
returns 15, causing the same two problems described in
substitution transformation. Accordingly, the ETSFS algorithm
separates each type from the other. The ETSFS algorithm uses
four 16-arrays, one for numeric, one for symbols, but because
it is difficult to enumerate all symbols in this project, the
suggested ETSFS algorithm considers only two types of
symbol: the symbols used in emails (-, ., @, _) and symbols
used in IP address (/, :). The last two 16-arrays are used in an
alphabetic context, with one for capital letters and the other for
small letters in order to enhance TSFS algorithm and make it
sensitive to the type of letter. The process is illustrated in Fig.
8, whilst Fig. 9 shows the shifting algorithm at the encryption
side.

The previous encryption process is considered as the result
of the first round of ETSFS algorithm. The output of the first
round goes as an input to the second round and the output of
the second round goes as an input to the third round. This
process continues up to the 12th round, whilst the output of this
round is the cipher text of the given plain text and that cipher
text is stored in the database. For keys in each round, two keys
are selected for encryption. In encryption, each round (i)
selects the key (i) and the key (i+1), at round 12 it selects key
(12) and key (1). In decryption, the keys are selected in reverse
order.

Fig. 4. Substitution example.

Key1 Key2

Science and Information Conference 2013
October 7-9, 2013 | London, UK

331 | P a g e
www.conference.thesai.org

Fig. 5. Substitution algorithm.

Fig. 6. Folding example.

Fig. 7. Folding algorithm.

I/P Array Element O/P

/ 0 1 2 3 4 5 6 /

: 1 2 3 4 5 6 0 /

* 2 3 4 5 6 0 1 @

v 3 4 5 6 7 8 9 10 11 12 13 14 15 … 23 24 25 0 1 2 s

d 4 5 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 z

b 5 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 4 w

U 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 4 5 O

. . .

. . .

4 1 5 4 6 0 7 2 8 3 9 2

Fig. 8. Shifting example.

Fig. 9. Shifting algorithm.

Algorithm shifting (Matrix data,

 MAtrix arrayNumber,

 Matrix arrayAlpha,

 Matrix arraySymbol)

Pre: data is 4x4 matrix of data gets from folding technique.

 arrayNumber is 16x10 dimension array used for numeric data.

 arrayAlpha is 16x26 dimension array used for alphabetic data.

 arraySymbol is 16x7 dimension array used for symbol data.

Post: data is data matrix after applying shifting technique.

 Matrix temp;

 char charOfData;

 loop from i=0 to i=3 do
 loop from j=0 to j=3 do

 charOfData = data[i,j];

 if (charOfData is number)

 loop from k=0 to k=9 do

 if (arrayNumber[(3xi)+i+j][k]== charOfData)

 temp[i,j] = k;

 break;

 end if

 end loop

 elseIf (charOfData is alphabet)

 loop from k=0 to k=25 do

 if (arrayAlpha[(3xi)+i+j][k]== charOfData)

 temp[i,j] = Alpha that have order (k);

 end if
 end loop

 else

 loop from k=0 to k=6 do

 if (arraySymbol[(3xi)+i+j][k]== charOfData)

 temp[i,j] = Symbol that have order (k);

 end if

 end loop

 end if

 end loop

 end loop

 data = temp;

 return data;

End shifting

Algorithm folding (Matrix data)

Pre: data is 4x4 matrix of data get from substitution technique.

Post: data is data matrix after applying folding technique.

 Matrix temp;

 temp[0,0] = data[3,3];

 temp[0,1] = data[3,1];

 temp[0,2] = data[3,2];

 temp[0,3] = data[3,0];

 temp[1,0] = data[1,3];

 temp[1,1] = data[2,2];

 temp[1,2] = data[2,1];

 temp[1,3] = data[1,0];

 temp[2,0] = data[2,3];

 temp[2,1] = data[1,2];

 temp[2,2] = data[1,1];

 temp[2,3] = data[2,0];

 temp[3,0] = data[0,3];

 temp[3,1] = data[0,1];
 temp[3,2] = data[0,2];

 temp[3,3] = data[0,0];

 data = temp;

 return data;

End folding

Algorithm substitution (Matrix data,

 Matrix key1,

 Matrix key2)

Pre: data is 4x4 matrix.

 key1 and key2 are 4x4 matrix used to encrypt data.

Post: data is data after applying substitution encryption method.

 Matrix temp;

 int M;
 for (int i=0; i<4; i++)

 for (int j=0; j<4; j++)

 if (data[i,j] is alphabet)

 M=26;

 else if (data[i,j] is number)

 M=10;

 else if (data[i,j] is symbol)

 M=7;

 end if

 temp[i,j]= (((k1[i,j]+ numric(data[i,j]) mod M)+k2[i,j]) mod M;

 end for

 end for

 data = temp;

 return data;

End substitution

Science and Information Conference 2013
October 7-9, 2013 | London, UK

332 | P a g e
www.conference.thesai.org

IV. IMPLEMENTATION

 A java-based project has been built to test the ETSFS
algorithm correctness and performance. The implementation
uses three-tier architecture, as represented in Fig. 10. The three
tiers separate the functions into interface, processing and data
management functions. The multi-tier architecture allows
developers to create flexible and reusable applications. In this
paper, the interface-tire is used to enter and retrieve data from
the database. The processing-tier is used to garner the data or
query from the interface-tier and then to complete the
encryption or decryption processes to apply the query over the
secure database. It stores the keys in a separate file instead of
storing them in the database in order to increase the security.
Finally, data management-tire stores the data.

Depending on the architecture suggested, the
implementation structure was developed, as shown in Fig. 11.
This figure illustrates all classes and their connections with
each other. It shows the attributes of each class and functions
headers. The classes include:

Fig. 10. Implementation architecture.

Fig. 11. Implementation UML diagram.

1) Main Class: In general, at the beginning, the user can

enter the information that will be encrypted. In this

implementation, the main class reads the data from a file to

obtain equivalent results when measuring the performance.

The interface part is responsible for taking the data from file

and sending it to the translator part, which is then saved in the

database. Another function for the interface is to retrieve the

data form the database by using the translator part.

2) Translator Class: This paper has focused only on the
encryption/decryption algorithms rather than how the query

should be translated or mapped to a query that can be applied

on the encrypted database. Thus, the translator part receives

the data from the interface part by the SaveInDatabase()

method, and draws a connection with the database so as to

apply insert query in the database after encrypting the received

data. The other method uses two direct specific select queries

for selecting the data: one for retrieving the complete table and

the other for selecting a query depending on a condition.

Encryption/Decryption (E/D) Class: This class is the most
important class for this work. It uses several methods to
prepare the size and format of the data that will be encrypted/
decrypted, and then applies the process of TSFS algorithm to
encrypt/decrypt the data using keys stored in the key class, then
returns the results to the translator class to apply the query.

3) Key Class: Key class reads the initial three keys from a

file and accordingly expands the keys to generate twelve

subkeys by shifting the rows as described in [1].

V. COMPARATIVE STUDY

This section presents a comparative study between the DES
algorithm, AES algorithm and ETSFS algorithms. It explains
the experiment in order to evaluate their performance to
establish the best algorithm amongst all possible algorithms. It
then reports the results and discusses them.

A. Experiment Setup

The experiment compared ETSFS algorithm with DES and
AES algorithms, which have open source code. So as to
implement and test the algorithms, the following materials
were used:

 Programming language: Java

 Application platform: NetBeans IDE 6.9.1.

 Development: Java Development Kit (JDK) 1.6.

 Database management system: MySQL Server 5.6.

 Java external Library: Connector-java 5.1.23-bin.jar to
connect the java with MySQL server.

 Visual database design tool: MySQL Workbench 5.2
CE used for database design, modeling and SQL
development.

 Operating system: Windows Vista Home Premium, 32-
bit.

 Hardware computer: Dell XPS M1330 laptop, Intel(R)
Core(TM) 2 Duo CPU T7300 2.00GHz and 3.00 GB
for RAM.

In the experiment, so as to obtain a fixed and fair
comparison between the algorithms, same entered data and
same functions responsible for accessing the database were
used in all algorithms. Moreover, each algorithm was tested
with the following data sizes: 100, 500, 1,000, 1,500 and 2,000

Science and Information Conference 2013
October 7-9, 2013 | London, UK

333 | P a g e
www.conference.thesai.org

rows. For each size, the experiment was repeated three times,
with the average value for each timer then calculated so as to
eliminate the effect of the computer processing issues and
insure near fair real value.

B. Evaluation Metrics

Several experiments have been conducted on the
algorithms. Two evaluation metrics are considered: execution
time (Second) that encryption/decryption processes is taken
and the size (Kilobyte) of database after storing the encrypted
data to know the impact of encryption process on the database
overall size. For execution speed, three timers were used in
each algorithm for three types of query:

 Insert: we calculated the insertion execution time to
determine how much time the insertion operation
consumes throughout the encryption processes. Insert
query example: INSERT INTO person VALUES
(encrypted name, encrypted phone, encrypted mail, and
job).

 Select All: to determine how much time the query takes
to select all the rows and decrypt the encrypted fields
through the decryption processes. A Select All query
example: SELECT name, phone, mail, job FROM
person.

 Select with Condition: to establish how much time the
query takes to encrypt the data in the condition, then
compares this data with the encrypted data inside the
database to retrieve the required data, and accordingly
decrypt the encrypted selected fields with decryption
processes. Select with condition query example:
SELECT name, phone, mail, job FROM person
WHERE name = encrypted name.

C. Results and Discussion

Execution time: The experiment's results of execution time
are represented in the first three figures. Fig. 12 shows the
relationship between the execution time of the insertion
operation with encryption processes, and the number of tuples
for each algorithm. Fig. 13 shows the relationship between
decryption time during searching in database using the Select
All query to retrieve the complete table, and the number of
tuples. Fig. 14 also shows the relationship between decryption
time but using Select with Condition queries, and the number
of tuples for each algorithm. From the results, it is obvious that
AES algorithm consumes the longest time for encryption, and
ETSFS algorithm consumes the least time for that. That is
mean, ETSFS algorithm has the best execution performance
compared to DES and AES algorithms when applying insert
queries with encryption. On the contrary, DES algorithm
consumes the least time when select queries have been applied.
The instability of the relationship may occur owing to the time
taken in connecting and disconnecting the database or file
operations. Moreover, hardware issues may cause inconsistent
relations. Generally, the encryption process observed consumes
more execution time than the decryption process. Also, the
execution of the query that retrieves the complete table
consumes little more time than those that depend on the
condition because the former retrieves more tuples than the
latter; this tuples need more decryption operations.

Database size: Fig. 15 shows the relationships between the
number of tuples and the size of the database in kilobyte after
storing the encrypted data with the use of the three algorithms
with different data sizes. The results show that the ETSFS
algorithm has consumed the smallest space amongst other
algorithms; this occurred because the size of the encrypted data
in ETSFS algorithm does not increase more so than the original
one; rather, it keeps its size as it is.

The experiment proves that the ETSFS algorithm can
secure the data successfully when the data sets of the ETSFS
algorithm are increased, and also that the substitution and
shifting techniques are corrected without affecting the
performance.

Fig. 12. The relationship between the insert operations execution time and the

number of inserted rows for the three algorithms.

Fig. 13. The relationship between the execution time of select all rows

operation and the number of rows for the three algorithms.

Fig. 14. The relationship between the execution time of select operations that

depend on condition and the number of rows in the database for the three
algorithms.

Science and Information Conference 2013
October 7-9, 2013 | London, UK

334 | P a g e
www.conference.thesai.org

Fig. 15. The relationship between the database size after applying encryption

and the number of rows for the three algorithms.

VI. CONCLUSION AND FUTURE WORK

Data-storing and exchanging between computers is
growing fast across the world. The security of this data
becomes an important issue for the world. The best solution
centred on securing the data is using cryptography, besides
other methods.

This paper proposes the enhancement of the TSFS
algorithm to support the encryption of special characters,
correct substitution process by providing more than one
modulo factor to differentiate between data types and prevent
the increasing on the data size, and also to correct the shifting
process for the same reasons by providing four 16-arrays. The
experimental results have shown that the ETSFS algorithm
successfully encrypted important symbols, as well as
alphanumeric data. The improved performance comes without
compromising the query processing time or the database size.
Using well-established encryption algorithms as benchmarks,
such as DES and AES, the proposed ETSFS algorithm was
shown to have consumed the smallest space and encryption
time amongst the other algorithms.

Due to time constraints, it was difficult to cover all special
symbols in this paper; however, the ETSFS algorithm can be
extended to include other symbols with slight modification to
the encryption/decryption processes. For future work, it is
intended that this algorithm be improved so as to accommodate
any size of data, rather than only 16 digits. Furthermore, it is
intended to further evaluate the security of ETSFS algorithm
by establishing the number of operations and the time attackers
need to recover the keys and accordingly hack the encrypted
data.

REFERENCES

[1] D. Manivannan and R. Sujarani. “Light weight and secure database

encryption using TSFS algorithm”. in Proc. Int. Conf. Computing
Communication and Networking Technologies, July 2010, pp. 1-7.

[2] L. Bouganim and P. Puncheral. "Chip-Secured data access: Confidential

data on untrusted servers". in Proc. Of the 28th International
Conference on Very Large Databases, August 2002, pp. 131-142.

[3] Z. Yang, S. Sesay, J. Chen and D. Xu. "A Secure Database Encryption
Scheme". in Proc. of Consumer Communications and Networking

Conference, January 2005, pp. 49-53.

[4] K. Kaur, K. Dhindsa and G. Singh. “Numeric to numeric encryption:
using 3KDEC algorithm”. in Proc. IEEE Int. Conf. Advance Computing,

March 2009, pp. 1501-1505.

[5] A. Rakesh, K. Jerry and S. Ramakrishnan. "Order preserving encryption
for numeric data". in Proc. ACM SIGMOD Int. Conf. Management of

Data, June 2004, pp.563-574.

[6] Z. Yong-Xia, "The Technology of Database Encryption". in Proc. 2nd
Int. Conf. MultiMedia and Information Technology, April 2010, pp. 268-

270.

[7] S. Bhatnagar, “Securing Data-At-Rest”, Literature by Tata Consultancy
Services.

[8] I. Widiasari. “Combining advanced encryption standard (AES) and one

time pad (OPT) encryption for data security”. The International journal
of Computer Applications, vol. 57, pp. 1-8 , November 2012.

[9] C. Raj, M. Kumar, D. Manivannan and A. Umamakeswari, “Design and
development of secret session key generation using embedded crypto

device-ARM-LPC 2148”. Journal of Artificial Intelligence, vol.6,
pp.134-144, 2013.

