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Abstract

The introduction of process changes is often used by management to invest in production competencies. However,

implementing process changes causes disturbances in production learning. This work describes a process change

strategy to increase the effective capacity of a production system when unit costs are subject to a learning curve. It is

found that the optimal process change level is decreasing in the effective capacity level and increasing in the

accumulated knowledge level and production learning rate. Conditions are provided under which the optimal process

change level is larger/smaller than the myopic process change level.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Problem environment

Manufacturing departments of electronics firms
deal with complex and knowledge-intensive pro-
duction processes. In these environments frequent
introductions of changes to the process recipe can
be observed. Examples of incremental process
changes are equipment changes, implementation
of software to support manufacturing, procedural
changes, etc. Empirical research shows that such
e front matter r 2004 Elsevier B.V. All rights reserve
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process change implementations are responsible
for important jumps backward on the learning
curve. Adler and Clark (1991) show that process
changes caused by changes of the product have a
disruptive effect on learning through sustained
production activities. Marcie and Hauptman
(1992) worked on the idea that the introduction
of important process changes such as a new
technology, is a source of uncertainty and as such
disturbances. The two problematic attributes
identified from the implementation and usage of
new technology: the technical complexity and the
shift in production approaches and organizing
principles involved in using the new technology.
Hatch and Mowery (1998) find that the disruptive
d.
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effects of the introduction of process innovations
on learning for the existing process in the semi-
conductor industry are significant. Lapre et al.
(2000) report that process changes due to quality
improvement projects without preparation of the
work force, disturb the process of waste reduction
in production. Terwiesch and Xu (2004) argue that
if process specifications are changed and intro-
duced in the production environment, line workers
have to adjust to the new situation: behavioural
patterns have to be adjusted and new operating
procedures have to be developed to cope with the
new environment. As indicated by these authors,
the implementation of a process change makes
some of the accumulated production knowledge
such as operating procedures obsolete. New
operating procedures have to be developed to
handle the modified process recipe. The more
significant a process change is, the larger the
decrease of the accumulated production knowl-
edge.

1.2. Decision problem

Although empirical evidence shows the negative
effect of process changes on learning in produc-
tion, managements often uses the introduction of
process changes to invest in production compe-
tencies to boost profits from operating a produc-
tion system, but face a dilemma: if investment in
process change is too low, performance improve-
ment opportunities due to scientific or technologi-
cal progress will be forgone; on the contrary, a too
large investment in process change is responsible
for a serious disruption of the production depart-
ment, which causes losses difficult to earn back.

1.3. Literature review

In the normative operations management litera-
ture, Carrillo and Gaimon (2000) present an
optimal control model that uses the process
change level and the level of training and
preparation for process change as variables
under control of management. The production
environment is parameterised with the level of
effective capacity of the production system and the
level of knowledge present in the production
environment. In the dynamics of the model,
they consider a short-term loss and a long-term
gain in effective capacity of a production
system due to process change activities. Further,
the level of knowledge present in the production
environment increases with the level of process
change. The level of knowledge increases the
performance of the production system. The
authors describe the optimal process change
policy and the optimal preparation and training
policy. The optimal amount of process change
over the production horizon is larger if the
amount of cumulative knowledge is larger. The
optimal preparation and training policy is decreas-
ing in time.
Terwiesch and Xu (2004) include explicitly the

loss of knowledge due to process change in an
optimal control model. They use production rate,
process change rate and learning effort as decision
variables to optimise the profit from cumulative
process changes and the stock of knowledge. In the
law of motion of the stock of knowledge, the level
of process change has a negative impact. The
optimal learning policy is monotone decreasing in
the knowledge level and the optimal process
change level is larger for larger amounts of
cumulative knowledge.
Comparing the assumptions on the dynamics of

both models leads to an interesting result: in the
Carrillo model, the level of knowledge increases
with the level of process change whereas in the
Terwiesch model, the level of knowledge decreases
with the level of process change. Carrillo explains
the increase through a learning-by-doing effect:
while implementing the new process recipe, opera-
tors and engineers learn how to do it.
Terwiesch explains his assumption differently:

due to the change of the process recipe, a part of
the accumulated production experience becomes
obsolete which clarifies the empirically established
jump backward on the learning curve. One way to
interpret the difference between both models is
that Carrillo does not consider knowledge
generated through sustained production but fo-
cuses on knowledge generated through training,
preparation for implementation of process
changes. The phenomenon described in Terwiesch
occurs for knowledge generated through sustained
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production and is additive to the phenomena
described in Carrillo.

1.4. Contribution

The objective of this paper is to gain further
insight in the control of process change activities.
Normative research that includes the empirically
established knowledge consumption effect of
process change is extended and further exploration
of optimal process change planning for a manu-
facturing unit, isolated from competitive environ-
ment, and producing a single product is provided.
Conditions affecting the planning are: unit pro-
duction costs decrease with the level of knowledge
generated through sustained production while
process change consumes knowledge. A general
unit cost and process change cost function is
considered. Due to the dynamic nature of learning
processes, a dynamic model is necessary to analyse
optimal process change planning. To prepare for
the inclusion of risk in future work, a discrete time
horizon is selected opposed to the continuous time
horizon used in literature. The decision problem is
structured using dynamic programming.
It is found that a myopic producer invests more

in process change if the level of production
knowledge increases and invests less in process
change if the effective capacity level increases. The
optimal process change level is increasing in
production learning rate and knowledge level
and decreasing in effective capacity level. Under
the assumptions of the model, necessary condi-
tions are provided under which an optimal policy
selects, every period a process change level smaller
or larger than the myopic level.
2. Problem structure

In this section the decision problem is structured
in a formal way as a preparation for the analysis.
The problem structured with a single decision
variable, two state variables, a system equation for
each state variable, a period reward function and
the discounted profit maximisation optimality
criterion. The section ends with the statement of
the optimisation problem.
2.1. Decision variable

At the beginning of every production period,
management sets the process change level p ð p 2

P ¼ ½0; p̄� Þ: An upper bound on the level of process
change is included to represent a budget con-
straint. A process change level larger than zero
(p40) results in the implementation of a process
change (a change of the process recipe).

2.2. State variable

The problem environment is parameterised with
the level of accumulated production knowledge
and the level of effective capacity. In the Carrillo
model similar state variables are used. From
literature it is clear that there is a strong relation
between knowledge generated through sustained
production and process change activities. Further
the positive influence of that knowledge on the
production unit cost is also widely described.
Therefore production knowledge is selected as a
parameter to describe properties of the production
environment relevant for the decision-maker. The
accumulated knowledge in the production envir-
onment s (sAS=[0,p[) includes routines devel-
oped to implement the current process recipe and
perform the resulting production activities.
Under the condition that demand exceeds

capacity, which frequently occurs during ramp-
up, the managerial objective of changing the
process recipe, is increasing the effective capacity
level of the current production system. Therefore,
the effective capacity level k is selected as a
parameter to describe the state of the production
system. We assume that k takes values in K

=[0,p[. Effective capacity is also selected as a
state variable in Carrillo and Gaimon (2000) and
Spence and Porteus (1987).

2.3. System equations

The system equations describe the effect of the
decision variable on the state variables.
Two phenomena are included in the knowledge

dynamics: production learning and a change of the
process recipe. Firstly, the effect of production
learning on the accumulated knowledge level is
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explained. Due to the repetitive execution of
production activities, the firm gains experience
with the current production process and accumu-
lates knowledge during a production period. It is
assumed that an increase in knowledge is a
constant proportion (gA]0,1[) of the present
knowledge level s and independent of the capacity
level. That assumption is made for analytical
purposes and is a linear approximation of a
concave phenomenon. The increase in knowledge
due to production learning is observed with a one-
period time lag as presented in Fig. 1. In the next
period, the firm can take advantage of the increase
in knowledge through a reduced unit cost. The
effect of knowledge depreciation is not included.
In the present modelling approach, this effect is
opposite to production learning. To include
knowledge depreciation, the depreciation rate
should be subtracted from the production learning
rate g:
Secondly, the effect of the process change level

on the accumulated knowledge level is described.
In manufacturing firms frequent changes of the
process recipe can be observed. Due to changes in
the process recipe, some of the procedures devel-
oped to perform activities prescribed in the process
recipe become obsolete and have to be replaced by
new ones. A decrease of the accumulated knowl-
edge is observed. That phenomenon is also
described in Terwiesch and Xu (2004).
The loss of relevant knowledge is proportional

(bA[0,1[) to the size of the process change. A
similar assumption is made in Terwiesch and Xu
(2004). b can be interpreted as a coefficient that
t t+1

s

s.(1+ �)

time

s

Fig. 1. Effect of learning.
translates effect of the level of process change on
the knowledge level.
If we assume that a process change is imple-

mented directly after the decision is taken,
effect on the knowledge level is instantaneous.
If at decision epoch t management chooses a
process change level p; a decrease in the knowledge
level is observed. A production run starts just after
the implementation of the process change. At
decision epoch t þ 1; the increase in knowledge
due to production experience occurs as shown in
Fig. 2.
To ease notational burdens in the following

paragraphs, we use gðs; pÞ ¼ sð1� bpÞ: Due to this
formulation and assumed non-negativity of s; the
upper bound of p; p̄; must be equal or smaller than
1=b:
The positive effect of the process change level on

the performance of the production process on the
other hand is measured through the effective
capacity. The effect of the process change level
on the effective capacity level k is instantaneous as
shown in Fig. 3.

2.4. Period reward

The unit production cost is a function of the
knowledge level as measured just after the
implementation of a process change, C1ðgðs; pÞÞ
with C1ð:Þ a decreasing strict convex twice
differentiable function and with C1 ¼ ð0Þc̄ and
lims"1C1ðsÞ ¼ c � 0: An example of such a cost
function is the classical exponential C(x)=ca+
cb exp(�dx), with ca; cb 2 Rþ

0 ; d 2 �0; 1½; where ca is
t+1

s

t
p

s.(1- �p)

s.(1- �p). (1+ �)

time

s

Fig. 2. Combined effect of learning and process change.
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Fig. 3. Effect of process change.

1Proofs of the propositions are omitted and can be obtained

from the corresponding author.
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the fixed cost component and cb is the variable cost
component. d can be interpreted as the rate at
which knowledge contributes to a decrease of the
variable unit cost. The cost per unit of process
change is C2ðpÞ with C2ð:Þ an increasing strict
convex twice-differentiable function on P such as a
quadratic cost function. Because no competitive
effects are included in the model, the revenue is
kept at a constant level R per capacity unit. It is
assumed the decision-maker can make a profit
from a process change strategy. If not, the
decision-maker will choose p ¼ 0 and it would be
meaningless to pursue any further analysis. There-
fore we assume RXC1ð0Þ: The period reward is
defined as

rðkt�1; st�1; ptÞ

¼ ½R � C1ðgðst�1; ptÞÞ�ðkt�1 þ ptÞ � C2ðptÞ

2.5. Optimisation problem

For i ¼ 1; 2; . . . let piðk; sÞ : ðK � SÞ ! P and let
p ¼ fp1ðk; sÞ; p2ðk; sÞ; p3ðk; sÞ; . . . ; g be a policy with
associated reward

Wpðk; sÞ ¼
X1
t¼1

½rðkt�1; st�1; ptÞ�:

Management’s problem is to determine a policy
to maximise the associated total discounted
reward with a 2 �0; 1½ the discount factor. The
objective function is defined as

F ðk; sÞ ¼ sup
p

Wpðk; sÞ
subject to

st ¼ gðst�1; ptÞð1þ gÞ;

kt ¼ kt�1 þ pt;

kt; st � 0; 8t 2 f0; 1; . . .g:

A policy p� is an optimal policy if the pay off it
generates from any initial state is the supremum
over possible pay offs from that state. We assume
an infinite planning horizon which is a reasonable
assumption if no information is available on the
planning horizon, the planning horizon is very
long or when successors of the product recipe
make use of identical production technologies. The
recursive formulation of the problem is

V ðk; sÞ ¼ sup
p2P

frðk; s; pÞ þ aV ½k þ p; gðs; pÞð1þ gÞ�g;

where F ðk; sÞ is the optimal value function. We
show the existence, uniqueness and continuity of
the optimal value function, using a contraction
mapping argument. Further, we establish the
existence and uniqueness of an optimal stationary
policy and provide a partial characterisation.
3. Model analysis1

3.1. Properties of the period reward

The period reward function is continuous,
bounded and differentiable on ðK � S � PÞ: Using
calculus, it is straightforward to show that the
period reward function is strictly increasing on K

and S: Taking advantage of the differentiability
assumptions on C1 and C2; it is easy to show, that
the period reward function is strictly concave on P:
Therefore, the myopic planner is faced with an
optimisation problem over a convex constraint set
with a strictly concave objective function. As such
a unique myopic policy exists. Using the condition
for submodularity for differentiable functions, it
can be shown that the period reward function is
submodular on (P � K). This can be interpreted
as: if the effective capacity level increases, the
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decision-maker will decrease his investment in
process change. If

C00
1ðgðs; pÞÞðk þ pÞsbð1� bpÞ

� C0
1ðgðs; pÞÞ ð1� bpÞ � bðk þ pÞ½ � � 0

holds for every s and p; the period reward is
supermodular on (P � S), that is if the knowledge
level increases, a myopic planner will increase his
investment in process change. If C1ð:Þ is replaced
with an exponentially decreasing unit cost function
C1ð:Þ ¼ cb expð�dÞ; that condition can be simpli-
fied to

s �
ðk þ pÞb� ð1� bpÞ

dðk þ pÞbð1� bpÞ
:

Analysis of the condition for relevant values of
k; p; d and b shows that it is fulfilled even for s

close to zero. For a process change level approach-
ing p̄; the condition is not fulfilled because

limp"1=b
ðk þ pÞb� ð1� bpÞ

dðk þ pÞbð1� bpÞ
¼ 1þ:

For further analysis, one assumption is needed:
the jointly strict concavity on (K � S � P) of the
period reward function.

3.2. Properties of the optimal value function

The behaviour of the optimal value function is
described using real analysis and a contraction
mapping argument. That approach is well-de-
scribed in the textbooks of Stokey and Lucas
(1989), Sundaram (1996) and Smith and McCardle
(2002). A good illustration of the approach can be
found in Mazzola and McCardle (1997). For the
proofs of the derived properties in this paper
similar arguments are used as in the above
references and therefore only the key arguments
of the proofs are given. In this section the existence
and properties of the optimal value function such
as continuity, strictly increasing and strictly
concave are established.
Because the period reward function is bounded

and the discount factor is less than one, the
optimal value function is well-defined. Using a
contraction mapping argument, the value function
is the unique bounded solution of the Bellman
equation and is continuous. Using again the
contraction mapping argument, the fact that the
period reward function is strictly increasing on
ðK � SÞ and that the set of bounded continuous
strictly increasing functions is closed, it is easy to
show that the optimal value function is strictly
increasing on the state space. Using the assump-
tion of strict concavity of the period reward
function, a similar approach can be used to show
the strict concavity of the value function on the
state space.

3.3. Existence and characterisation of an optimal

policy

In this paragraph the existence of a unique
optimal policy is established and properties of that
policy are described. The information that the
planning horizon is infinite, limits the set of
feasible policies. An optimal policy will be
stationary and of the form p ¼

fpðk; sÞ; pðk; sÞ; pðk; sÞ; . . . ; g: As derived in the pre-
vious section, the optimal value function F ðk; sÞ
exists and is a solution of the Bellman equation.
The Weierstrass theorem shows the supremum is
attained over the domain, therefore an optimal
policy exists that generates the optimal value
function.
To describe the optimal policy, we make use of

the theory of correspondences. A good introduc-
tion to the material can be found in Sundaram
(1996). The action correspondence gives the set of
feasible actions of the decision-maker and is
defined by F: Because Fðk; sÞ ¼ P for every ðk; sÞ;
F is a constant valued correspondence, further P is
bounded and compact valued. As such the feasible
action correspondence is continuous. We define
the graph of F by

GrðFÞ ¼ fðk; s; pÞ 2 K � S � Pjp 2 Fðk; sÞg:

A constant valued action correspondence has a
convex graph. We define the optimal action
correspondence as

Gðk; sÞ ¼ fp 2 PjF�ðk; sÞ

¼ rðk; s; pÞ þ aF�ðk þ p; gðs; pÞð1þ gÞÞg:

Because an optimal policy exists, G is non-empty.
With the strict concavity of the optimal value
function, all the conditions of the maximum
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theorem under convexity are fulfilled and we can
conclude that Gðk; sÞ is single valued everywhere
and therefore a continuous function. In the
following paragraph the unique optimal policy is
further described.
To describe the behaviour of the optimal policy

in the effective capacity level, knowledge level and
production learning rate, we make use of the
approach described by Santos (1991). The Euler
condition2 and the implicit function theorem are
fundamental in that approach. With the existence
of a unique optimal policy function and if every
period the process change level is interior, the
optimal policy fptg satisfies the Euler necessary
condition for an optimum,

d
dy

½rðkt�1; st�1; yÞ þ arðkt�1 þ y; st�1ð1� byÞ

ð1� gÞ; ptþ1Þ� ¼ 0:

In the Euler condition, the optimal policy
function is implicitly defined. Because the condi-
tions of the implicit function theorem are fulfilled,
we can use the theorem to determine the sign of the
partial derivative of the optimal policy function
with respect to k; s and g: After some algebra, we
find that the sign of the partial derivative of the
optimal policy function with respect to k is
negative. Knowing that the myopic policy is
submodular on (K � P), the result is not surprising
and the optimal process change level decreases in
the level of effective capacity. The behaviour of the
optimal policy function in the knowledge level also
echoes the behaviour of the myopic policy. For the
exponentially decreasing unit cost function C1ð:Þ ¼
cb expð�d:Þ; the conditional behaviour can be
characterised as: if the myopic policy is super-
modular and if

s4
bðk þ p þ ptþ1Þ � ð1� bpÞ

dbðk þ p þ ptþ1Þð1� bpÞð1� bptþ1Þð1þ gÞ
;

the optimal policy is increasing in the knowledge
level. Analysis of the condition for relevant levels
of k; s; p; d;b and ptþ1 shows that it holds even for
very small s; though for a process change level
2This Euler condition is a discrete time version of the classic

Euler condition used in the calculus of variations.
approaching p̄; the condition is not fulfilled
because

limp"1=b
bðk þ p þ ptþ1Þ � ð1� bpÞ

dbðk þ p þ ptþ1Þð1� bpÞð1� bptþ1Þð1þ gÞ

¼ 1þ:

The behaviour of the optimal policy function in
the production learning rate is described by the
following condition. If

g4
1

dsð1� bpÞð1� bptþ1Þ
� 1

holds for g in ]0,1], the optimal policy function is
increasing in production learning rate. Analysis of
the condition for relevant levels of p; s; d; b and
ptþ1 shows that it holds, though for p approaching
p̄; the condition obviously fails.
The relation with the myopic policy gives

information on the structure of the optimal policy.
With p̂ the myopic policy and p� the optimal policy
and using optimality we know that

rðk; s; p�Þ þ aF�½k þ p�; gðs; p�Þð1þ gÞ�

� rðk; s; p̂Þ þ aF�½k þ p̂; gðs; p̂Þð1þ gÞ�:

Because rðk; s; p̂ � rðk; s; p�Þ; then surely

F�½k þ p�; gðs; p�Þð1þ gÞ�

� F�½k þ p̂; gðs; p̂Þð1þ gÞ�

must hold. F ð:; :Þ is now strictly increasing, thus if
k þ p� � k þ p̂ and gðs; p�Þ � gðs; p̂Þ) and thus p� �

p̂ and p̂ � p�; the above weak inequality surely
holds. Therefore we can conclude that if p� ¼ p̂;
the necessary condition of an optimum holds.
Because the argument is based on a necessary
condition for an optimum, we have to check for
p�ap̂:

Case 1: p�4p̂:
A necessary condition for p�4p̂ to hold is the

increase of F� in the first argument due to the
selection of p� over p̂ which is larger than the
decrease of F� in the second argument due to the
selection of p� over p̂:Under interiority restrictions
on the state variables and decision variable, F�ð:; :Þ
is continuously differentiable and the above
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statement can be reformulated as

d
dx

F�ðx; y�Þ

� �
x¼x�

�
d
dx

F�ðx; ŷÞ

� �
x¼x̂

4
d
dy

F�ðx�; yÞ

� �
y¼y�

�
d
dy

F�ðx̂; yÞ

� �
y¼ŷ

with

x̂ ¼ k þ p̂; ŷ ¼ gðs; p̂Þð1þ gÞ;

xn ¼ k þ p�; y� ¼ gðs; p�Þð1þ gÞ:

Expressed in the period rewards, we have

d
dx

rðx; y�; pðx; y�Þ

� �
x¼x�

�
d
dx

rðx; ŷ; pðx; ŷÞ

� �
x¼x̂

4
d
dy

rðx�; y; pðx�; yÞ

� �
y¼y�

�
d
dy

rðx̂; y; pðx̂; yÞ

� �
y¼ŷ

:

Case 2: p�op̂:
A necessary condition for p�op̂ to hold is the

decrease of F� in the first argument due to the
selection of p� over p̂ which is smaller than the
increase of F� in the second argument due to the
selection of p� over p̂; that is

d
dy

F�ðx̂; yÞ

� �
y¼ŷ

�
d
dy

F�ðx�; yÞ

� �
y¼y�

4
d
dx

F�ðx; y�Þ

� �
x¼x�

�
d
dx

F�ðx; ŷÞ

� �
x¼x̂

:

To illustrate these conditions, consider a finite
planning horizon and a large salvage value for
capacity versus a small salvage value for knowl-
edge. Under this condition, an optimal policy
invests more in process change than a myopic one.
Under the opposite case an optimal policy invests
less in process change than a myopic one.
Finally, we give an insight into the behaviour of

the state sequences {ki} and {si} generated by the
optimal policy. From the law of motion of the
effective capacity level k; it is clear that {ki} is
increasing. Convergence of the sequence is only
possible if p� drops to zero.
Before describing the behaviour of {si}, it is

important to notice that if the system reaches the
set of states (k; s ¼ 0), it cannot escape it and the
knowledge level provides no information to the
decision-maker. Only the effective capacity level
can cause a difference between the myopic and
optimal process change level. To assure the set
(k; s ¼ 0) is never reached, the following condition
should hold:

sð1� bpnÞð1þ gÞ4s or

pnðk; sÞog=½bð1þ gÞ� for s close to zero:

The process change level works on the knowl-
edge level as well as the effective capacity level:
profit can increase through unit cost reduction as
well as through an increase in effective capacity.
The information that knowledge will increase
through production experience and will decrease
through implementation of process change affects
the optimal policy. If the condition does not hold,
the knowledge level will fall to zero. Then profit
can only increase through an increase of the
effective capacity level and knowledge dynamics
do not influence the optimal policy. Convergence
of the sequence {si} occurs if p� ¼ g=½bð1þ gÞ�:

3.4. Comparative statics

For the exponentially decreasing unit cost
function C1ðs; pÞ ¼ ca þ cb expð�dsð1� bpÞÞ; the
value function is increasing with R and d and
decreasing with ca; cb and b: The myopic policy is
also increasing with d: For the numerical example
with R ¼ 1000; ca ¼ 0; cb ¼ 50; k ¼ 1; s ¼ 10; b ¼

0:8; C2 ¼ 100; d increasing from 0.4 to 0.8, the
behaviour of the myopic policy can be seen from
Fig. 4. The left-hand graph shows the period
reward function. The lower curve, jðpÞ; is the
period reward for d equal to 0.4. In the right hand
graph, the derivatives are shown. Again the lower
curve, d=dpjðpÞ; has d ¼ 0:4:
4. Conclusions and further research

In this paper a multi-period decision model is
introduced for a decision-maker that parame-
terises the environment with the level of produc-
tion experience and the level of effective capacity
of the production system. By choosing the process
change level every period, the decision-maker
maximises the profit of operating the production
system. With an infinite planning horizon and for
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Fig. 4. (a) Combined effect of delta and the level of process change on the period reward; (b) Effect of delta on the derivative of the

period reward with respect to the level of process change.
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process changes with instantaneous effects on the
knowledge level and effective capacity level, an
optimal policy will not always invest more in
process change than a myopic policy. For a finite
planning horizon, dependent on the difference in
salvage value of capacity versus knowledge, an
optimal policy will invest more or less in process
change than a myopic policy. The myopic process
change level is increasing in the knowledge level
and decreasing in the effective capacity level. The
optimal process change level is increasing in the
knowledge level and production learning rate and
decreasing in the effective capacity level. Further
research will try to describe the structure of the
optimal policy more precise through analysis of
stability. Also the effects of the initial level of
effective capacity and knowledge on the state
sequences are interesting to analyse. A natural
extension is the inclusion of random shocks or risk
on the effect of the process change level on the
knowledge level or effective capacity level. An-
other extension is observation noise on the knowl-
edge level.
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