
Decision Support Systems 7 (1991) 301-314 301
North-Holland

PDM: A knowledge-based tool
for model construction

Ramayya Krishnan
Decision Systems Research Institute, School of Urban and Public
Affairs, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

This paper describes PDM, a knowledge-based tool design-
ed to help non-expert users construct Linear Programming
(LP) models of Production, Distribution and Inventory (PDI)
planning problems. PDM interactively aids users in defining a
qualitative model of their planning problem, and employs it to
generate problem-specific inferences and as input to a model
building component that mechanically constructs the algebraic
schema of the appropriate LP model. Interesting features of
PDM include the application of domain knowledge to guide
user interaction, the use of syntactic knowledge of the problem
representation language to effect model revision, and in the use
of a small set of primitive modeling rules in model construc-
tion.

K@,words: Artificial intelligence, Model management.

Ramayya Krishnan is Assistant Professor of Management Sci-
ence and Information Systems at Carnegie Mellon University.
He has a B. Tech in Mechanical Engineering from the Indian
Institute of Technology, a M.S. in Operations Research, and a
Ph.D. in Information Systems from the University of Texas at
Austin. His research interests are in the application of sym-
bolic and qualitative reasoning techniques. His recent work has
used these techniques to develop computer-based environments
that support model development activities.

1. Introduction

Models play an important role in decision sup-
port. While models drawn from several modeling
traditions have been successfully integrated into
computer-based decision support systems, Linear
Programming (LP) models have been among the

m o s t widely used. While the quality of system
support for LP modeling has improved consider-
ably in recent years, the need to conceptualize a
real-world problem in terms of abstract concepts
and mathematical notation has inhibited their use
by non-expert users. Several knowledge-based sys-
tems have been proposed to address these short-
comings (Binbasioglu and Jarke, 1986; Bu-Halaiga
and Jain, 1988; Ma, Murphy and Stohr, 1986;
Murphy and Stohr, 1986; Krishnan, 1987,1988;
Muhanna and Pick, 1988).

This paper describes PDM, a knowledge-based
tool that has been designed to help non-expert
users construct LP models of Production, Distri-
bution and Inventory (PDI) planning problems.
PDM interactively aids users in defining a logic
model of their planning problem which is used to
provide qualitative 1 insights, and as input to a
model building component that mechanically con-
structs the corresponding LP model through the
application of a small set of primitive modeling
rules such as material balance. The ability to con-
struct a quantitative LP model from high level
qualitative specifications is an important feature
of the PDM system.

PDM has been implemented in Prolog and the
chief purpose of this paper is to describe its key
modules in order to document the lessons learnt in
designing and implementing a knowledge-based
model construction system. PDM employs alter-

i By qualitative, we imply a focus on representations and
inferences which deal with objects, their inter-relationships,
and their attributes as opposed to representations that em-
ploy numeric relationships and emphasize numeric rea-
soning.

0167-9236/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

302 R. Krishnan / PDM

nate knowledge sources (domain knowledge and
model building knowledge) and a variety of
knowledge representation schemes. Thus the
primary focus of the paper is on the functionality
to be gained from both the structure and the
content of the knowledge used in PDM and the
means employed to integrate the alternate knowl-
edge sources and representation schemes.

The rest of the paper is organized as follows.
Section 2 introduces the key features and compo-
nents of the PDM system. Section 3 and 4 detail
knowledge representation and control issues in
two principal components: the front end and the
model construction module. Section 5 draws con-
clusions and describes some avenues for future
research in light of current limitations.

2. PDM: The system

USER USER

FNTEREACE

Fig. 1. The PDM system.

D
PROBLEM

SPECLFICATION

TRANSFORMAT PONS

MATH MODEL

SYNTACTIC

TRANSEORMATIONS

TARGET

SPECIFICATION

PDM was designed to support non-expert users
who lacked the familiarity with mathematical
modeling to construct a model appropriate to
their needs. The ability of non-expert users, by
virtue of their familiarity with their problem, to
provide qualitative problem descriptions is an im-
portant assumption underlying the approach in
PDM. These qualitative descriptions when formal-
ized within the syntax of a logical language result
in a logic model of the problem. Since all the
inferences flow from this representation, key fea-
tures in the PDM system revolve around the
processes used to obtain, represent and manipu-
late it. Figure 1 illustrates the important features
of PDM which are summarized in the following.

(a) Qualitative descriptions of PDI planning prob-
lems are represented in a domain-specific logic-
based language called PM (Krishnan, 1988). PM
allows problems to be described in vocabulary
familiar to the user and employs domain-specific
axioms to provide problem-specific inferences. A
specification in PM defines a logic model of the
problem.

(b) To render the syntax of PM transparent to the
user, an object-oriented dialogue system has been
designed to interactively aid the user in problem
description. This system employs knowledge of
PM to assert sentences in response to answers
obtained from the user, and domain-specific
knowledge to aid problem elicitation by focusing

the users attention on processes implied by the
evolving description (i.e. the logic model) of the
problem.

(c) The knowledge base employed by the dialogue
system also explicitly encodes syntactic interde-
pendencies between elements that make up the
logic model enabling structural revision of PM
problem specifications in the event of change. An
important implication of this feature is the ability
to structurally revise LP models, since structurally
revised PM specifications yield structurally revised
LP models.

(d) The algebraic schema of the LP model is
constructed from the PM problem specification
through the application of primitive modeling rules
such as material balance. The application of these
primitive modeling rules, stated in domain-inde-
pendent terms, to a specific logic model in PM is
facilitated by transformation rules which represent
knowledge about the relationships between the
generic processes that underlie the modeling rules
and the specific processes that underlie PDI plan-
ning. The output of the model construction com-
ponent is the LP model represented in an em-
bedded list notation which is subsequently trans-
formed to sentences of a mathematical modeling
language called Structured Modeling (SM) (Geoff-
rion, 1987).

R. Krishnan / PDM 303

3. PDM architecture

Components in the PDM system have been
grouped together and implemented as three dis-
tinct modules. (See fig. 2.) They are the front end,
the model construction module and the back end.
While user interaction, query answering, and
model revision are handled by the front end, model
building is performed by the model construction
module, and syntactic transformations of the con-
structed LP models to Structured Modeling imple-
mented in the back end.

The modules employ distinct knowledge
sources. The front end employs domain-specific
knowledge to guide user interaction and query
answering, and syntactic knowledge of PM to
effect model revision. On the other hand, the
model construction module employs model build-
ing knowledge. The modules also use different
knowledge representation schemes. While the front
end employs an object-oriented scheme, the model
construction component employs a forward chain-
ing rule-based system and a set of procedures that
manipulate certain object-types to perform equa-
tion building. The back end which implements a
straightforward syntactic transformation into
Structured Modeling is implemented as a set of
Prolog procedures. The alternative knowledge rep-
resentation schemes and knowledge sources em-
ployed in these modules are integrated within a
blackboard type architecture, i.e., all communica-
tion between them is channeled exclusively through
changes to a global database of facts.

The rest of the paper focusses on the two most
important features of PDM: (a) the ability to
interactively aid a user in defining and revising a
high level qualitative specification of a planning
problem and (b) the ability to construct the LP

SYSTEM

1 "-..
MODEL

FRONT END CONSTRUCTION
SYSTEM

/ \
DIALOG QUERY
SYSTEM SYSTEM

Fig. 2. System architecture.

BACK END

model from these high level specifications. Read-
ers interested in a complete treatment of the PDM
system are referred to Krishnan (1987, 1988).

3.1. The front end

The two important kinds of functionality
offered by the front end are: (a) interactive sup-
port in the definition of a PM problem specifica-
tion and (b) management and control of revisions
to existing PM problem specifications. Both these
features are directly influenced by the problem
representation language PM. The following briefly
introduces PM with a view to motivate the discus-
sion on the knowledge base employed in the front

e n d module.

3.2. The PM language

PM (Krishnan, 1988) is a logic-based language
designed to logically model the PDI planning do-
main. An important feature in PM is the ability to
introduce specific vocabulary as and when neces-
sary to describe particular problems that arise in
PDI planning. These user-introduced terms form
the open vocabulary of PM while the rich set of
generic concepts about PDI planning form part of
its closed vocabulary. The following specifies a
subset of the closed vocabulary of PM.

object constants: products, machines, raw-materi-
als, regular-labor, overtime-labor, production-pro-
cess, plant, distribution-center, warehouse, cus-
tomer-site, purchase-yard, time, real-number,
used-in, produced-by, purchased-at, stored-at,
sold-at, available-at, shipped-from, unit-process-
cost, unit-process-price, process-level, utilization-
rate, availability, min-level, max-level

prirnitioe predicates: basic-type, type, ftype, sub-
type, fsubtype, fdomain, fapply, ins-of, index, = ,

Object constants in PM are used to name the
various objects, processes and relationships that
characterize the PDI domain. For example, con-
stants such as product and raw-material name sets
of objects, while others such as purchased-at and
stored-at are used to name relationships. Examples
of constants used to name functions are process-
level and unit-process-cost. These different types
of object constants in PM are distinguished and

304 R. Kr~hnan / PDM

explicitly inter-related using declarations in PM.
Three important declarations are introduced using
examples.

fsubtype (coal-purchase-cost, process-cost)
This predicate is interpreted as declaring that
coal-purchase-cost is a type of process-cost.

basic-type (product)
All object constants that name sets are declared
using the predicate basic-type. The statement
shown above declares that product is a type of set.

type (purchased-at, [raw-material, purchase-loca-
tion, time])
Object constants that name relations are declared
using the predicate type. The predicate is interpre-
ted as declaring that the domain of the relation
named in the first argument is defined by the
cross product of the sets named in the second
argument. Thus, purchased-at names a relation
that is the purchase of raw-materials at purchase-
locations across time.

ftype (process-cost, [commodity, location, time],
Ireal-numberl)
Object constants that name functions (i.e. attri-
butes of objects or their relationships) are declared
using the predicate ftype. The predicate is also
used to declare the domain and range of the
named function. Thus, process-cost names a func-
tion that measures the cost of performing a given
task or process using some commodity at a par-
ticular location and time-period.

The declarations shown above explicitly relate
object constants within the closed and open vocab-
ulary respectively. Relationships between elements
of the open and closed vocabulary are declared as
shown below. Object constants that name sets and
relations in the open and closed vocabulary are
related using the predicate subtype. This predicate
plays a role that is similar to the generalization/
specialization declarations in frames and semantic
networks.

subtype (steel, product)
The example declares that the set named by

steel, an object constant of the open vocabulary, is
a subset of the set named by product, an object
constant of the closed vocabulary. Similarly, ob-
ject constants used to name functions in the open
and closed vocabulary are related using the predi-
cate fsubtype.

Sets, relations, and functions that are named in
PM are defined using the predicates ins-of and
fapply.

ins-of(Ibrown-coal], coal)
The example declares that brown-coal is an ele-
ment of the set named by coal. Elements of sets
and relations are declared using the predicate ins-
of.

fapply (coal-purchase-cost, [brown-coal, dallas,
19801, 12.25)
The predicate fapply is interpreted as applying the
function named in the first argument to a list of
constants in the second argument. The output of
the function application is the third argument.

A fragment of PM specification of a production
problem in the steel industry is shown below.

An Example in PM
basic-type (steel)
basic-type (coal)
basic-type (coal-mines)
basic-type (weeks)

subtype (steel, product)
subtype (coal, raw-material)
type (coal-purchase, [coal, coal-mines, weeks])
subtype (coal-purchase, purchased-at)
ftype (coal-purchase-cost, [coal, coal-mines, weeks,

[real-number])
fsubtype (coal-purchase-cost, process-cost)

ins-of ([brown-coal], coal)

The example consists of a set of declarations
which specify the production of steel in a produc-
tion process utilizing coal as a raw-material. An
important feature of the specification is its focus
on representing qualitative relationships at a high
level of abstraction.

3.3 Knowledge base

As previously mentioned, helping the user de-
fine his problem in PM and managing structural
revisions to a PM specification are the two im-
portant tasks performed by the front end module.

R. Krishnan / PDM 305

Since elements of the closed vocabulary represent
generic objects, processes and attributes in PDI
planning, defining a specific problem in PM re-
quires the identification of those problem-specific
concepts that are specializations of the generic
domain-specific concepts. Thus aiding problem
definition requires the ability to "visit" each
generic concept and generate a question regarding
its relevance to the users problem situation. The
knowledge base (KB) in PDM enables this by
structuring the domain-specific elements in PM
into a graph of objects. 2 Each individual constant
in PM used to name sets, relations, and functions
is treated as an object. The object-based represen-
tation of the constant purchased-at is shown be-
low.

purchased-at
(related-objects):

value: [raw-material, purchase-location, time]
(inv-related-to-prod):

value: [purchase-cost, purchase-level]
(inv-related-to-dis):

value: [purchase-cost, purchase-level, ship-
ping-plan]

(process-relations):
value: [used-in, stored-at, supplied-from]

(to-fill-in):
rule-action: should-we-proceed

(if-confirmed):
rule-action: perform-tasks

Each object has five slots. The first three slots
represent information about the syntactic inter-de-
pendencies between the elements in PM. These
inter-dependencies are used to effectively link the
various objects in the KB to create an object
graph. Each leaf node of this object graph corre-
sponds to a constant used to name a set (i.e.,
declared using the predicate basic-type). Internal
nodes of this object graph such as the example
object correspond to constants used to name rela-
tions and functions (i.e., declared using the predi-
cate type and ftype respectively). A fragment of
the object graph that corresponds to the closed
vocabulary is shown in fig. 3.

PURCHASE COST 1 PURCHASE LEVEL

PURCHASED AT

RAW]
MATERIAL

l PURCHASE] TIME PERIOD
LOCATION

Fig. 3. An object graph.

The value fillers of the first three slots associ-
ated with an object are derived directly from the
type, fdomain 3 and joint-domain declarations in
PM. The close relationship between the object-
based representation and the language is il-
lustrated with a simple example. Consider the type
declaration in PM of the purchased-at predicate
shown below.

type (purchased-at, [raw-material, purchase-loca-
tion, time])

The declaration relates the object constant
purchased-at to a list of object constants that
define its domain. This list of object constants is
used as the filler of the related-objects slot of the
purchased-at object.

The next two slots, inv-related-to-pred and inv-
related-to-dis, represent the "inverse" of the link-
ages represented in the related-objects slot. These
slots represent the set of all object constants whose
type / fdomain / jo in t -domain declarations contain
the object under consideration. Thus for example,
the purchased-at object would be part of the in-
verse pointer slots of the raw-material, purchase-
location and time objects. Specifically, the inverse
pointers associated with an object, say Y, in the

2 The term objects is used in the object-oriented programming
sense. While the objects we use in PDM resemble frames in
their use of slots and procedural attachments, no use is made
of either inheritance or defaults.

3 fdomain and joint domain are declarations in PM. While
fdomain explicitly relates functions to its domain, joint-do-
main relates three relations X. Y and Z such that X names
the join of the relations named by Y and Z.

306 R. Krishnan /PDM

object graph can be defined set theoretically as
shown below.

Inv(Y) := (X: type (Y, L) & X ~ L I fdomain (Y,
X) I joint-domain (Y, U, V) & X = U
or V)

This set of inverse pointers is partitioned into two
non-disjoint sets as a function of the problem
contexts that arise in PDI planning. Thus, the
inv-related-to-prod slot of the purchased-at object
that represents the inverse pointers in the produc-
tion planning context has a filler that consists of
purchase-level and purchase-cost while the equiv-
alent inv-related-to-dis slot for the distribution
planning context additionally consists of the ship-
ping-plan object. The rationale is that while distri-
bution contexts may involve both purchase and
shipping, production contexts only involve
purchase. This partitioning of the inverse pointers
as a function of the problem context enables the
selective traversal of objects in the object graph as
a function of problem context enabling a focussed
and structured dialogue process.

Inverse pointers enable traversal of the object
graph in a "bottom-up" manner; i.e., from leaf
nodes that correspond to sets to internal nodes
that correspond to relations and functions. This
ability is particularly important since the dialogue
begins in the context of objects that correspond to
sets and proceeds to contexts represented by ob-
jects that correspond to relations and functions.
This is in keeping with the intuitive transition of
dialogue about simple concepts to interaction
about more complex concepts.

While the first three slots represent syntactic
inter-dependencies, the fourth slot, process-rela-
tions, represents domain-specific axioms. It so
happens that these axioms about the domain are
of a simple structure that facilitates their represen-
tation via a slot. Consider the example shown
below.

If purchased-at (X, L, T) then stored-at (X, L, T)
or supplied-from (X, L, T)
or 3P used-in (X, P, L, T)

The axiom is non-horn and states that if a
commodity X is purchased at a given location
then it is either stored at that location, supplied
from that location or used in a production process
housed in that location. The process-relations slot
represents the list of processes related to the

purchase process, enabling the system to bring
these related processes to the attention of the user.
Finally, the last two slots represent procedural
knowledge that implements the logic used in the
dialogue and model revision process. Each of these
slots have rule-action facets. In contrast to the
value facets used in the first four slots, rule-action
facets are active facets (much like the if-needed
facets in traditional frame-based systems) that en-
code Prolog procedures. In the example, the slots
to-fill-in and if-confirmed have rule-action facets
which represent the procedures should-we-proceed
and perform-tasks. The logic implemented in these
facets is described later. Each object in the KB is
implemented in Prolog as a set of clauses. A
fragment of the purchased-at object used as an
example is shown below. The general notation
used is

(object-name) ((slot-name), (facet-name),
(value-filler))

Where value-filler is either a list of objects, an
object or a Prolog procedure. Thus the purchased-
at object is represented as shown below.

purchased-at (related-objects, value, [raw-material,
purchase-location, time])

purchased-at (to-fill-in, rule-action, should-we-
proceed)

The next section describes the control logic
used to manage the generation of dialogue.

3.3.1 Dialogue generation
The primary responsibility of the dialogue gen-

eration module is to interactively aid the user in
defining the logic model of the problem. This is
done by generating hypotheses (dialogue) in the
context of situations, entities and relationships
that characterize PDI planning. The traversal of
the object graph to generate dialogue is performed
in a bottom-up manner and characterized by two
important steps:

(a) Queries are generated initially in the context
of the leaf nodes (i.e. the sets) of the object graph.
These queries are aimed at identifying the various
types of entities in a particular planning problem
and ascertaining the existence of relationships be-
tween these types of entities. They are referred to
as askable queries since the information they ob-

R. Krishnan / PDM 307

rain from the user is not inferable. An example is
shown below.

What are the different types of product produced
in the system?
I: steel
Please supply the elements of the set "steel"
[:]stainless-steel, tensile-steel]

The first query requests the specification of
different types of products to which the user iden-
tified steel as the only type. The next query re-
quired the user to enumerate the elements of the
set steel. User responses are translated into PM
sentences. The sentences asserted in response to
this interaction are shown below.

subtype (steel, product)
ins-of (steel, [stainless-steel, tensile-steel])

(b) Responses to the askable queries form the
kernel of the evolving PM specification of the
problem. Domain-specific axioms (such as those
represented in the process-relations slot) and other
rules encoded as procedures are used to hypothe-
size situations implied by the evolving PM specifi-
cation. Hypothesis that are confirmed by the user
result in additions to the PM specification. For
instance, assume that the user already indicated
that coal is purchased at coal mines. The domain-
specific axiom represented in the process-relations
slot of the purchased-at object is used to hypo-
thize the set of processes related to the purchase
process. The user is required to confirm the ex-
istence of one or more of these related processes.
The axiom and associated dialogue are shown
below.

if purchased-at (X, L, T) then stored-at (X, L, T)
or supplied-from (X, L, T)
or 3P used-in (X, P, L, T)

The axiom states that if a commodity is purchased
at a location, it is either stored or supplied from
that location or used in production at the same
location. This axiom results in a series of queries
to the user.

is coal stored at the coal mines? (Y / N)
is coal supplied-from the coal mines? (Y / N)
is coal used in production at the coal mines? (Y / N)

The illustrated use of domain axioms to guide
user interaction is a novel feature of PDM and a
measure of the power to be gained from a

domain-specific approach. Furthermore, the re-
quirement that the user identify at least one re-
lated process as relevant prevents several simple
infeasibilities that arise in problem specifications
due to errors of omission.

The "bo t tom up" traversal of the object graph
has been implemented using an agenda scheme
(Lenat, 1976).

Agenda-based Control: An agenda-based con-
trol strategy employs a queue to order the tasks at
hand. In our context, the flow of dialogue is
initiated and controlled by the addition of objects
in the object graph to the queue which might then
be sampled under a variety of queuing disciplines.

A significant advantage of the agenda scheme
is the ability to tune the order in which objects are
sampled thereby effecting control over the flow of
dialogue. The interpreter is implemented as a sim-
ple recursive procedure in Prolog as shown below.

interpret ([]).
interpret ([H IT]):- process-frame (H, T, Current),

interpret (Current).

The first clause represents the base case of the
recursion and indicates that the interpreter halts
when the agenda is empty. The second clause
implements a FIFO (First In First Out) policy and
considers the first object in the agenda using the
procedure process-frame. This procedure activates
the procedures in the to-fill-in and if-confirmed
slots of the object under consideration. These pro-
cedures decide on dialogue generation and upon
completion queue in objects in their appropriate
inverse slots into the agenda thus ensuring the
flow of dialogue. Changes to the agenda status are
determined and the procedure recurses on a new
binding of the agenda status.

In the context of our object graph, dialogue is
initially generated in the leaf nodes. Upon com-
pletion, interior nodes that are part of inverse slots
of the leaf node are added to the agenda resulting
in the continued generation of dialogue among
interior nodes. Dialogue generation halts when the
agenda is empty.

Dialogue Generation: An important feature of
the dialogue generation process is the need to
generate dialogue in vocabulary familiar to the
user. We have adopted a simple strategy to effect
this feature.

Dialogue is generated by procedures attached
to the to-fill-in and the if-confirmed slots of an

308 R. Kr~hnan / PDM

object. These procedures contain inference rules
and templates of text. An example of a rule used
to generate dialogue in the context of the
purchased-at object is shown below.

If X is a type of raw-material and
If Y is a type of purchase-location
If Z is a type of time-period
Then ascertain the existence of a relation between

X, Y, and Z

The variables X, Y etc. are bound to user-supplied
predicates that describe objects and processes
specific to the problem at hand. These variables
are combined wilh a template of text to generate
dialogue using vocabulary previously supplied by
the user. An example template is shown below.

is ?X purchased-at ?Y in Z?

The ?X denotes variables that are to be bound.
Templates that have instantiated variables result
in text. Thus ?X being bound to coal and ?Y to
coal-mines and ?Z to weeks results in the dialogue
shown below.

/ * Comments are enclosed within these symbols
*/

is coal purchased-at coal-mines in weeks? (yes /no)
l: yes
Please supply a unique name to this relation
I: coal-purchase-plan
/ * The PM sentence corresponding to this answer

is * /
/ * type (coal-purchase-plan, [coal, coal-mines,

weeks]) * /

The first line of the dialogue queries the existence
of a relation between coal and coal-mines which
were user-supplied descriptions of objects and lo-
cations in his particular problem. Having ascer-
tained the existence of the relation, the user is
required to supply a name for the relationship and
tuples that represent instances of the relation. As
the dialogue proceeds, such interaction results in
sentences in PM being asserted. These type of
questions are generated for each combination of
objects that satisfy the dialogue generation rules.

A useful feature of the dialogue system is the
ability to save the state of the agenda and object
graph midway through problem description. While
saving the state of the queue suffices to save the
state of the agenda, the state of the object graph is
saved using a system of markings. Each object

which has been investigated (i.e. dialogue genera-
tion having resulted in the addition of PM
sentences) is marked. This allows the interpreter
to skip over marked objects when user interaction
is continued at a later time to prevent the redun-
dant generation of dialogue. The important ad-
vantage of being able to save the state of the
agenda and the object graph is the ability to work
with the PDM system as and when desired.

The algorithm used to control the flow of di-
alogue is presented below.

ALG Process:
Do while agenda is not empty;
choose object from agenda
if object is m a r k e d / * if 1 * /
then queue objects in the inverse-relation slot
based on problem
context to the agenda and delete object from
a g e n d a / * end if 1 * /
if object is u n m a r k e d / * if 2 * /
then

if objects in its related-objects slot are marked
/ * i f3 * /

then invoke perform-task and
if new PM sentences are added / * if 4 * /
then mark object and queue in objects in

inverse-relation slot
else queue in objects in inverse-relation slot

and
delete object from agenda / * end if 4 * /

else delete frame from agenda / * end if 2, 3 * /
End Do While;

Limitations: While the dialogue system amply
demonstrates the functionality to be gained from a
knowledge-based tool, a state of the art
graphics/icon driven system would be far more
user-friendly.

3.3.2. Mode l revision

Model specifications are constantly revised as
assumptions that underlie problem specifications
change. These changes in assumptions about the
problem being modeled typically result in ad-
ditions a n d / o r deletions of sets, relations and
functions or in additions and deletions of their
respective elements. This alteration of an existing
problem specification has been termed model revi-
sion.

Since elements that make up the problem
specification are tightly inter-related, a change in

R. Krishnan / PDM 309

one part tends to affect other parts. This implies
the need to control and manage the process of
propagating local changes throughout a problem
specification. Propagation of changes requires the
explicit representation of inter-dependencies be-
tween problem elements. The object graph (i.e. the
KB) in PDM supports model revision since it
encodes the syntactic inter-dependencies between
elements that make up the problem specification.
It is used in conjunction with the agenda-based
scheme described in the previous section to effect
propagation of local changes. Consider a fragment
of a production planning problem in PM. The
sentences have been labelled for ease of reference.

sent1: subtype (steel, product)
sent2: subtype (open-hearth, production-process)
sent3: subtype (oxygen, raw-material)
sent4: subtype (oxy-used-in-open-hearth, used-in)
sent5: type (oxy-used-in-open-hearth, [oxygen,

open-hearth, mill, year])

The PM specification describes the usage of
oxygen in the open-hearth process used in steel-
production. Now if the open-hearth process de-
clared in sent2 were to be removed from the
problem specification, the sentences labelled sent4
and sent5 should also be deleted since they are
directly or indirectly related to the deleted object
constant. Since each user-supplied object constant
is related to a object constant of the closed vocab-
ulary (i.e. an object in the object graph), propa-
gation of deletions is implemented using a selec-
tive traversal of the object graph.

This traversal begins by accessing the object in
the graph related to the user-supplied predicate
being deleted. In the example since open-hearth,
the predicate being deleted is a production-pro-
cess, an object in the object graph, the
production-process object is accessed and all the
objects in its inverse-relation slot are queued into
the agenda. These objects correspond to object
constants of the closed vocabulary that are di-
rectly dependent on the production-process object.
The interpreter examines those objects that are
marked (recall that marked objects correspond to
object constants of the closed vocabulary that are
part of the current PM specification) and deletes
all PM sentences which contain a marked object.
To ensure continued propagation, objects in its
(the object under consideration by the interpreter)

inverse-relations slots are also added to the agenda.
Processing halts when the agenda is empty.

The principal advantage of this approach is its
focus of attention on only that part of the prob-
lem specification that needs to be changed. This is
an important factor in the context of large specifi-
cations where a brute force search for sentences
that need to be deleted may be infeasible.

In addition to this ability to propagate dele-
tions, PDM also supports the addition of new sets
and relations. When new sets or relations are
added, there is a need to focus the users attention
on the ramifications of the addition. For example,
if a new type of product is added, new relation-
ships have to be defined with existing production
processes and other relevant objects involved in
processes such as sales or storage. Once again the
object graph and the agenda scheme are em-
ployed. When a user-supplied set or relation is
added to an existing specification, the object of
the closed vocabulary that it is related to (an
object in the object graph) is queued into the
agenda. The generation of dialogue is similar to
that described previously with one major dif-
ference. Before any dialogue is generated in the
context of any object in the object graph, a com-
parison is made between situations that are hy-
pothesized and those that already exist in the PM
specification. This prevents the redundant genera-
tion of dialogue. Once again due to the explicit
representation of dependencies in the object graph,
the process is focussed with only the minimal
number of queries being generated.

This ability to revise model specifications is an
important feature in PDM due to the flexibility
offered to the user. Additionally, it also supports
structural revision of the LP model since structur-
ally revised PM specifications yield structurally
revised LP model schema. This is particularly im-
portant since currently available LP modeling sys-
tems do not support this feature

4. Model construction

Linear Programming (LP) models are algebraic
models. The construction of an algebraic model
from a qualitative model requires the representa-
tion and application of model building knowledge.

This, in PDM, has been effected using a small
set of domain-independent modeling principles

310 R. Krishnan / PDM

such as material balance and resource utilization.
The principal insight used in model construction
derives from the observation that all the measure-
ment functions a used in the qualitative model to
represent numeric attributes are directly trans-
formable to variables and parameters of the alge-
braic model. The model building rules are strictly
concerned with determining the functional form
of the mathematical relationships that relate these
variables and parameters.

Model building rules such as the material bal-
ance rule shown below represent generic types of
mathematical relationships. These generic rela-
tionships are encoded in terms of domain-inde-
pendent abstractions referred to as canonical ob-
jects.

If [X] is a list of inputs to a system and
If [Y] is a list of outputs to a system
Then the sum of the set of inputs _> sum of the

set of outputs

Model building requires these rules to be applied
to a PM specification. However, the lack of a
common vocabulary presents a problem, i.e.,
model building rules are stated in terms of canoni-
cal objects while PM specifications are stated in
terms of problem-specific vocabulary. This has
been resolved by adopting a simple two step pro-
cedure. First all problem specific objects, processes
and attributes that make up the PM specification
are transformed into canonical objects. Rules used
for this task are referred to as transformation
rules. The canonical objects so generated are com-
bined using the model building rules into alge-
braic functions and constraints that make up the
schema of the LP model.

While the foregoing presented the synopsis of
the logic used in model construction, the imple-
mentation in PDM takes account of certain other
problems. Specifically, model building in PDM
proceeds at two distinct levels: the construction
level and the meta construction level. The applica-
tion of transformation rules and model building
rules take place at the construction level. How-
ever, these tasks at the construction level are con-
trolled using meta-rules that encode knowledge
about the order or sequencing of rule application.

4 Examples o f m e a s u r e m e n t func t i ons are p roduc t ion - l eve l ,
u t i l i za t ion- ra te etc.

Meta-rules are essential to ensure correctness in
model building and serve to improve the efficiency
of the model building process. The following il-
lustrates with a simple example, the knowledge
representation and model building strategy em-
ployed in each of these levels.

Example
Consider a simplified steel production process
which uses various types of coal to produce several
types of steel. Assume that the production of each
unit of steel utilizes a fixed amount of coal. Let its
value be given by the parameter, coal-util-rate.
Coal is supplied via purchase and let the variable
coal-purchase-level represent the amount of coal
purchased. Finally let the steel production level be
measured by the variable steel-production level.

Given this fragment of simple problem, the
capacity constraint for coal that we seek to gener-
ate is modeled using material balance resulting in
the capacity constraint shown below.

sum(S) sum(P) (coal-util-rate (C, P, L, T) *
steel-production-level (S, P, L, T)) _<
coal-purchase-level (C, L, T)

The letters S, C, P, L and T correspond to
indices for the sets steel, coal, production process,
location and time-period.

The equivalent qualitative model of the prob-
lem in PM is shown below.

subtype (coal, raw-material)
subtype (steel, product)
subtype (coal-usage, used-in)
type (coal-usage, [coal, steel-production-process,

mill, years])
ftype (coal-util-rate, [coal, steel-production-pro-

cess, mill, years), [real-number])
fsubtype (coal-util-rate, utilization-rate)
ftype (steel-production-level, [steel, steel-produc-

tion-process, mill, years), [real-number])
fsubtype (steel-production-level, activity-level)

The differences in the representation of the
problem in PM and quantitatively as an algebraic
model are significant. The PM representation sim-
ply declares the type of steel, coal and the produc-
tion process and declares the relations and func-
tions that characterize the problem. On the other
hand, the algebraic constraint represents a
mathematical relationship between numeric varia-
bles and parameters. The following briefly demon-

R. Krishnan / PDM 311

PM SPECIFICATION

, , ~ J ~ D I S T R I B U T I O N

PRODOCTiONBAsE 1 RULE

PRODUCTION EQUATION
BUILDING p

DISTRIBUTION
\ PRODUCTION AND

DISTRIBUTION CONTEXT RULE BASE

D I STRIBUT]G II PRODUCT I ON
EQUATION BU LDING

CONTEXT

MATERIAL BALANCE

RULE BASE

MATERIAL BALANCE
EQUATIONS

l
COST AND BOUND

STRUCTURES
Fig. 4. Meta rules.

strates the steps used to construct the material
balance constraint from the PM specification.

First since the context of the problem is pro-
duction planning, a meta-rule at the meta con-
struction level is used to suggest the application of
a "transformation-in-form" rule denoted fig. 4 as
the production rule base.

The "transformation in form" rule is based on
a generic resource utilization process and relates
the utilization-rate of a resource commodity that
is input to a production process to the production
level of the commodity produced as output of the
same production process. The rule 5 is shown be-
low.

If utilization-rate (X, R, RU, P, L, T) and activ-
ity-level (PL, RU, P, L, T)

and index (X, IR) and index (PL, IPL) and
index (P, IP) and
index (R, Iru) and subtype (Dom, utilized-at)
and
type (Dom, [R, L, T))

5 The collection of model building rules may be found in
Appendix A (available from the author).

then gensym (RUL, utilization-level) and
fsubtype (RUL, process-level) and fdomain

(RUL, Dora) and
RUL := sum(Iru) sum(IP) (X : IR * PI: IPL)

The rule constructs the function RUL from
canonical objects that are instances of the utiliza-
tion-rate and activity-level objects. The applica-
tion of , this domain-independent rule to a PM
specification requires the application of transfor-
mation rules to the PM specification. The collec-
tion of transformation rules associated with model
building rules is referred to as a rule base or rule
set.

The exact details of the transformation rule
application are detailed and space limitations pre-
vent a full-fledged description. The reader is re-
ferred to Krishnan (1988) and Krishnan (1987) for
an indepth discussion of transformation rules. The
idea behind transformation rules is simple. Essen-
tially these rules encode knowledge about the rela-
tionships between the domain-specific processes
that underlie the problem specification in PM and
the generic processes that underlie the model con-
struction rules. They yield instances of canonical
objects as output. Thus, in the context of our
example, the transformation rules recognize the
steel-production-process as a process that utilizes
coal as a resource to produce steel. After a series
of transformations this leads to the generation of
steel-production-level as an activity-level object
and the coal-util-rate as an utilization-rate object.
They are shown below.

steel-production-level
canonical-object-type:

value : activity-level
context:

value: [s, p, 1, t]

coal-util-rate
canonical-object-type:

value : utilization-rate
context:

value : [c, p, 1, t]

An important feature of these canonical objects
are their context slots that represent index infor-
mation. The assignment of indices to the elements
of a PM specification is performed by index as-
signment procedures that are also activated by
meta rules. Essentially, the strategy used in index
assignment is as follows. Each set is assigned a

312 R. Krishnan / PDM

unique symbol as index. These indices may either
be supplied by users or provided by the system.
Indices of named relations and functions are de-
rived from index information associated with the
sets that define their domain. An example is shown
below.

if type (N-pred, [A1 An]) and index (A1, IA1)
and

and . . , and index (An, IAn)
then index (N-pred, [IA1, IA2 IAn])

Thus type and ftype declarations in PM prove
useful in index assignment. Indices set the context
of an object and are used to determine if two or
more objects can be combined by a given model
building rule. The objects steel-production-level
and coal-utilization-rate are combined using the
transformation-in-form rule introduced previously
to yield a new canonical object which encodes the
left hand side (LHS) of the constraint we are in
the process of constructing. The function built
using the "transformation-in-form" rule and the
canonical object that encodes it are shown below.

coal-utilization-level (c, 1, t) = sum(s) sum(p)
(coal-util-rate (c, p, 1, t) *
steel-production-level (s, p, 1, t))

coal-utilization-level
canonical-obj ect-type:

value: activity-level
context:

value: [c, 1, t]
function:

value: [[sum, [s, p]], [coal-rate, [c, p, 1, t]],
[*], [production-level, [s, p, 1, t]]]

The object is similar to the objects introduced
earlier with one major exception. It has a function
slot which encodes the LHS of the Constraint
under construction.

Upon completion of the model building rule
application, control transfers once again back to
the meta-level which suggests the application of
the material balance rule. Once again the transfor-
mation rules associated with material balance are
applied to the PM specification to yield coal-utili-
zation-level, the canonical object described above,
as an output object and the coal-purchase-level as
an input object. The coal-purchase-level object is

shown below.

coal-purchase-level
canonical-object-type:

value : output
context:

value: [c, 1, t]

These objects are combined using the material
balance rule since they represent inputs and out-
puts of the commodity coal to a system (the
indices in the objects are used to ensure similarity
in contexts) into the capacity constraint being
constructed. This yields the constraint for coal
shown below.

coal-utilization-level (c, m, t) < coal-purchase-level
(c, m, t)

The constraint is similar to the one derived
earlier except that the LHS in the constructed
constraint is itself a function that was defined
earlier.

Three concluding remarks are in order. First,
meta-rules were used to sequence the application
of the model building rules and their associated
rule sets as a function of the problem context, i.e.,
since the context was production planning, only
the resource utilization and material balance rules
and their associated transformation rules were
activated. This results in significant gains in ef-
ficiency since rule sets tend to be large and trans-
formation to yield canonical objects involves sig-
nificant amount of chaining. Second, the construc-
tion process used is "bo t tom up". That is con-
straints are built from left hand sides (LHS) and
right hand sides (RHS) using the material balance
rule. The LHS and the RHS themselves may be
functions constructed through previous rule appli-
cations. This is illustrated in our example where
the LHS was a resource utilization function built
from primitive canonical objects using the "trans-
formation-in-form" rule. The generic "bot tom-up"
procedure used in constraint building is depicted
in Fig. 5.

An important implication of this "bo t tom up"
approach to model building is the need to se-
quence the application of the model building rules
since the input 6 of one rule is dependent on the

6 In the example, the material balance rule used the coal-utili-
zation object that was the output of the "transformation-in-
form" rule as an input in constraint construction.

R. Krishnan / PDM 313

C O N S T R A I N T

L H S

C O M P 1 C O M P 2 . . . C O M P N

/
S C O M P A 1 . . . S C O M P N

R H S

C O M P 1 . . . COblRq

S C O M P 1 . . . S C O M P N

S U M (i) (r a t e (i , i) * l e v e l (i)) < C A P (j)

Fig. 5. Model construction strategy.

output of another to ensure correctness. Thus meta
rules serve to ensure correctness of model building
and to increase the efficiency by only invoking
relevant rule sets. Meta rules thus serve an im-
portant role in that they explicitly represent
"model construction" know how. In being the sole
repository of such knowledge they support the
alteration and manipulation of it in the event of
change.

An important aspect of the model building
strategy that we have not discussed as a result of
space limitations is the role of transformation
rules. Transformation rules are used to transform
elements of the PM specification to canonical
objects. This process is straightforward or com-
plex depending on the availability of a rule/rules
specific to the situation being modeled by the PM
specification. If directly applicable rules exist, the
transformation process is straightforward. How-
ever, in the absence of directly applicable rule sets,
PM problem specifications are augmented with
additional variables and decomposed into situa-
tions for which directly applicable rule sets are
available. A common example of this case include
transhipment processes which are augmented with
additional variables into transportation processes
and material balance processes for which directly
applicable rules exist. This process of diagnosing
situations that need augmentation and decompos-
ing them into situations that are transformable
into canonical objects is an important non-trivial
feature of transformation rules. The interested
reader is referred to Krishnan (1987, 1988) for a

detailed description of the model construction
process.

5. Conclusions

The main contribution of this paper has been
the description of two key modules in the PDM
system with an emphasis of the structure and
content of the knowledge employed to effect user-
interaction, model revision and automatic model
construction. The novel features in PDM that
were detailed included a description of the close
interaction between the object-oriented system
employed in the front end and the logic-based
language PM used in problem representation, the
use of domain-specific axioms to guide user inter-
action, and the application of domain-indepen-
dent model building rules to simulate a "first
principles" approach to automated model con-
struction.

There are two principal limitations in PDM.
First, the user interaction system is textual and
cumbersome and a graphics based tool would
greatly help the type of non-expert users that
PDM hopes to support. Another limitation is the
restriction to linear models and the PDI planning
domain. An useful extension would be a domain-
independent logic modeling language that would
be used to specify mathematical and qualitative
models within an uniform framework. Research is
underway on all these issues.

314 R. Krishnan / PDM

References

[1] Binbasioglu, M. and Jarke, M. (1986), Domain specific
tools for knowledge based model building, Decision Sup-
port Systems, 2, 1, pp. 213-223.

[2] Bu-Halaiga, M., and Jain, H. (1988), An Interactive Plan
Based Procedure for Model Integration in DSS, Proceed-
ings of the Twenty First Hawaii Conference on the System
Sciences, IEEE Press.

[3] Geoffrion, A.M. (1987), Introduction to Structured Model-
ing, Management Science, 33, 5, pp. 547-588.

[4] Krishnan, R. (1987), Knowledge Based Aids for Model
Construction, Unpublished PhD Thesis, University of
Texas, Austin, TX 78712.

[5] Krishnan, R. (1988), Automated Model Construction: A

Logic Based Approach, Annals of Operations Research,
Special Issue on Linkages between AI and OR, 21, pp.
195-226.

[6] Lenat, D. (1976), AM: An AI Approach to Discovery in
Mathematics as Heuristic Search, Rept-STAN-CS-80-814,
Stanford University, CA.

[7] Ma, P., Murphy, F., Stohr, E. (1986), The Science and Art
of Formulating Linear Programs, to appear in IMA Journal
of Mathematics In Management.

[8] Murphy, F., Stohr, E. (1986), An Intelligent System for
Formulating Linear Programs, Decision Support Systems,
2,1.

[9] W.A. Muhanna and Pick, R. (1988), Composite Models in
SYMMS, Proceedings of the Twenty First Hawaii Con-
ference on the System Sciences, IEEE Press.

