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This paper describes PDM, a knowledge-based tool design- 
ed to help non-expert users construct Linear Programming 
(LP) models of Production, Distribution and Inventory (PDI) 
planning problems. PDM interactively aids users in defining a 
qualitative model of their planning problem, and employs it to 
generate problem-specific inferences and as input to a model 
building component that mechanically constructs the algebraic 
schema of the appropriate LP model. Interesting features of 
PDM include the application of domain knowledge to guide 
user interaction, the use of syntactic knowledge of the problem 
representation language to effect model revision, and in the use 
of a small set of primitive modeling rules in model construc- 
tion. 
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1. Introduction 

Models play an important role in decision sup- 
port. While models drawn from several modeling 
traditions have been successfully integrated into 
computer-based decision support systems, Linear 
Programming (LP) models have been among the 

m o s t  widely used. While the quality of system 
support for LP modeling has improved consider- 
ably in recent years, the need to conceptualize a 
real-world problem in terms of abstract concepts 
and mathematical notation has inhibited their use 
by non-expert users. Several knowledge-based sys- 
tems have been proposed to address these short- 
comings (Binbasioglu and Jarke, 1986; Bu-Halaiga 
and Jain, 1988; Ma, Murphy and Stohr, 1986; 
Murphy and Stohr, 1986; Krishnan, 1987,1988; 
Muhanna and Pick, 1988). 

This paper describes PDM, a knowledge-based 
tool that has been designed to help non-expert 
users construct LP models of Production, Distri- 
bution and Inventory (PDI) planning problems. 
PDM interactively aids users in defining a logic 
model of their planning problem which is used to 
provide qualitative 1 insights, and as input to a 
model building component that mechanically con- 
structs the corresponding LP model through the 
application of a small set of primitive modeling 
rules such as material balance. The ability to con- 
struct a quantitative LP model from high level 
qualitative specifications is an important feature 
of the PDM system. 

PDM has been implemented in Prolog and the 
chief purpose of this paper is to describe its key 
modules in order to document the lessons learnt in 
designing and implementing a knowledge-based 
model construction system. PDM employs alter- 

i By qualitative, we imply a focus on representations and 
inferences which deal with objects, their inter-relationships, 
and their attributes as opposed to representations that em- 
ploy numeric relationships and emphasize numeric rea- 
soning. 
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nate knowledge sources (domain knowledge and 
model building knowledge) and a variety of 
knowledge representation schemes. Thus the 
primary focus of the paper is on the functionality 
to be gained from both the structure and the 
content of the knowledge used in PDM and the 
means employed to integrate the alternate knowl- 
edge sources and representation schemes. 

The rest of the paper is organized as follows. 
Section 2 introduces the key features and compo- 
nents of the PDM system. Section 3 and 4 detail 
knowledge representation and control issues in 
two principal components: the front end and the 
model construction module. Section 5 draws con- 
clusions and describes some avenues for future 
research in light of current limitations. 

2. PDM: The system 

USER USER 

FNTEREACE 

Fig. 1. The PDM system. 
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PDM was designed to support non-expert users 
who lacked the familiarity with mathematical 
modeling to construct a model appropriate to 
their needs. The ability of non-expert users, by 
virtue of their familiarity with their problem, to 
provide qualitative problem descriptions is an im- 
portant assumption underlying the approach in 
PDM. These qualitative descriptions when formal- 
ized within the syntax of a logical language result 
in a logic model of the problem. Since all the 
inferences flow from this representation, key fea- 
tures in the PDM system revolve around the 
processes used to obtain, represent and manipu- 
late it. Figure 1 illustrates the important features 
of PDM which are summarized in the following. 

(a) Qualitative descriptions of PDI planning prob- 
lems are represented in a domain-specific logic- 
based language called PM (Krishnan, 1988). PM 
allows problems to be described in vocabulary 
familiar to the user and employs domain-specific 
axioms to provide problem-specific inferences. A 
specification in PM defines a logic model of the 
problem. 

(b) To render the syntax of PM transparent to the 
user, an object-oriented dialogue system has been 
designed to interactively aid the user in problem 
description. This system employs knowledge of 
PM to assert sentences in response to answers 
obtained from the user, and domain-specific 
knowledge to aid problem elicitation by focusing 

the users attention on processes implied by the 
evolving description (i.e. the logic model) of the 
problem. 

(c) The knowledge base employed by the dialogue 
system also explicitly encodes syntactic interde- 
pendencies between elements that make up the 
logic model enabling structural revision of PM 
problem specifications in the event of change. An 
important implication of this feature is the ability 
to structurally revise LP models, since structurally 
revised PM specifications yield structurally revised 
LP models. 

(d) The algebraic schema of the LP model is 
constructed from the PM problem specification 
through the application of primitive modeling rules 
such as material balance. The application of these 
primitive modeling rules, stated in domain-inde- 
pendent terms, to a specific logic model in PM is 
facilitated by transformation rules which represent 
knowledge about the relationships between the 
generic processes that underlie the modeling rules 
and the specific processes that underlie PDI plan- 
ning. The output of the model construction com- 
ponent is the LP model represented in an em- 
bedded list notation which is subsequently trans- 
formed to sentences of a mathematical modeling 
language called Structured Modeling (SM) (Geoff- 
rion, 1987). 
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3. PDM architecture 

Components in the PDM system have been 
grouped together and implemented as three dis- 
tinct modules. (See fig. 2.) They are the front end, 
the model construction module and the back end. 
While user interaction, query answering, and 
model revision are handled by the front end, model 
building is performed by the model construction 
module, and syntactic transformations of the con- 
structed LP models to Structured Modeling imple- 
mented in the back end. 

The modules employ distinct knowledge 
sources. The front end employs domain-specific 
knowledge to guide user interaction and query 
answering, and syntactic knowledge of PM to 
effect model revision. On the other hand, the 
model construction module employs model build- 
ing knowledge. The modules also use different 
knowledge representation schemes. While the front 
end employs an object-oriented scheme, the model 
construction component employs a forward chain- 
ing rule-based system and a set of procedures that 
manipulate certain object-types to perform equa- 
tion building. The back end which implements a 
straightforward syntactic transformation into 
Structured Modeling is implemented as a set of 
Prolog procedures. The alternative knowledge rep- 
resentation schemes and knowledge sources em- 
ployed in these modules are integrated within a 
blackboard type architecture, i.e., all communica- 
tion between them is channeled exclusively through 
changes to a global database of facts. 

The rest of the paper focusses on the two most 
important features of PDM: (a) the ability to 
interactively aid a user in defining and revising a 
high level qualitative specification of a planning 
problem and (b) the ability to construct the LP 
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Fig. 2. System architecture. 
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model from these high level specifications. Read- 
ers interested in a complete treatment of the PDM 
system are referred to Krishnan (1987, 1988). 

3.1. The front end 

The two important kinds of functionality 
offered by the front end are: (a) interactive sup- 
port in the definition of a PM problem specifica- 
tion and (b) management and control of revisions 
to existing PM problem specifications. Both these 
features are directly influenced by the problem 
representation language PM. The following briefly 
introduces PM with a view to motivate the discus- 
sion on the knowledge base employed in the front 

e n d  module. 

3.2. The PM language 

PM (Krishnan, 1988) is a logic-based language 
designed to logically model the PDI planning do- 
main. An important feature in PM is the ability to 
introduce specific vocabulary as and when neces- 
sary to describe particular problems that arise in 
PDI planning. These user-introduced terms form 
the open vocabulary of PM while the rich set of 
generic concepts about PDI planning form part of 
its closed vocabulary. The following specifies a 
subset of the closed vocabulary of PM. 

object constants: products, machines, raw-materi- 
als, regular-labor, overtime-labor, production-pro- 
cess, plant, distribution-center, warehouse, cus- 
tomer-site, purchase-yard, time, real-number, 
used-in, produced-by, purchased-at, stored-at, 
sold-at, available-at, shipped-from, unit-process- 
cost, unit-process-price, process-level, utilization- 
rate, availability, min-level, max-level 

prirnitioe predicates: basic-type, type, ftype, sub- 
type, fsubtype, fdomain, fapply, ins-of, index, = ,  

Object constants in PM are used to name the 
various objects, processes and relationships that 
characterize the PDI domain. For example, con- 
stants such as product and raw-material name sets 
of objects, while others such as purchased-at and 
stored-at are used to name relationships. Examples 
of constants used to name functions are process- 
level and unit-process-cost. These different types 
of object constants in PM are distinguished and 
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explicitly inter-related using declarations in PM. 
Three important declarations are introduced using 
examples. 

fsubtype (coal-purchase-cost, process-cost) 
This predicate is interpreted as declaring that 
coal-purchase-cost is a type of process-cost. 

basic-type (product) 
All object constants that name sets are declared 
using the predicate basic-type. The statement 
shown above declares that product is a type of set. 

type (purchased-at, [raw-material, purchase-loca- 
tion, time]) 
Object constants that name relations are declared 
using the predicate type. The predicate is interpre- 
ted as declaring that the domain of the relation 
named in the first argument is defined by the 
cross product of the sets named in the second 
argument. Thus, purchased-at names a relation 
that is the purchase of raw-materials at purchase- 
locations across time. 

ftype (process-cost, [commodity, location, time], 
Ireal-numberl) 
Object constants that name functions (i.e. attri- 
butes of objects or their relationships) are declared 
using the predicate ftype. The predicate is also 
used to declare the domain and range of the 
named function. Thus, process-cost names a func- 
tion that measures the cost of performing a given 
task or process using some commodity at a par- 
ticular location and time-period. 

The declarations shown above explicitly relate 
object constants within the closed and open vocab- 
ulary respectively. Relationships between elements 
of the open and closed vocabulary are declared as 
shown below. Object constants that name sets and 
relations in the open and closed vocabulary are 
related using the predicate subtype. This predicate 
plays a role that is similar to the generalization/ 
specialization declarations in frames and semantic 
networks. 

subtype (steel, product) 
The example declares that the set named by 

steel, an object constant of the open vocabulary, is 
a subset of the set named by product, an object 
constant of the closed vocabulary. Similarly, ob- 
ject constants used to name functions in the open 
and closed vocabulary are related using the predi- 
cate fsubtype. 

Sets, relations, and functions that are named in 
PM are defined using the predicates ins-of and 
fapply. 

ins-of( Ibrown-coal], coal) 
The example declares that brown-coal is an ele- 
ment of the set named by coal. Elements of sets 
and relations are declared using the predicate ins- 
of. 

fapply (coal-purchase-cost, [brown-coal, dallas, 
19801, 12.25) 
The predicate fapply is interpreted as applying the 
function named in the first argument to a list of 
constants in the second argument. The output of 
the function application is the third argument. 

A fragment of PM specification of a production 
problem in the steel industry is shown below. 

An Example in PM 
basic-type (steel) 
basic-type (coal) 
basic-type (coal-mines) 
basic-type (weeks) 

subtype (steel, product) 
subtype (coal, raw-material) 
type (coal-purchase, [coal, coal-mines, weeks]) 
subtype (coal-purchase, purchased-at) 
ftype (coal-purchase-cost, [coal, coal-mines, weeks, 

[real-number]) 
fsubtype (coal-purchase-cost, process-cost) 

ins-of ([brown-coal], coal) 

The example consists of a set of declarations 
which specify the production of steel in a produc- 
tion process utilizing coal as a raw-material. An 
important feature of the specification is its focus 
on representing qualitative relationships at a high 
level of abstraction. 

3.3 Knowledge base 

As previously mentioned, helping the user de- 
fine his problem in PM and managing structural 
revisions to a PM specification are the two im- 
portant tasks performed by the front end module. 
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Since elements of the closed vocabulary represent 
generic objects, processes and attributes in PDI 
planning, defining a specific problem in PM re- 
quires the identification of those problem-specific 
concepts that are specializations of the generic 
domain-specific concepts. Thus aiding problem 
definition requires the ability to "visit" each 
generic concept and generate a question regarding 
its relevance to the users problem situation. The 
knowledge base (KB) in PDM enables this by 
structuring the domain-specific elements in PM 
into a graph of objects. 2 Each individual constant 
in PM used to name sets, relations, and functions 
is treated as an object. The object-based represen- 
tation of the constant purchased-at is shown be- 
low. 

purchased-at 
(related-objects): 

value: [raw-material, purchase-location, time] 
(inv-related-to-prod): 

value: [purchase-cost, purchase-level] 
(inv-related-to-dis): 

value: [purchase-cost, purchase-level, ship- 
ping-plan] 

(process-relations): 
value: [used-in, stored-at, supplied-from] 

(to-fill-in): 
rule-action: should-we-proceed 

(if-confirmed): 
rule-action: perform-tasks 

Each object has five slots. The first three slots 
represent information about the syntactic inter-de- 
pendencies between the elements in PM. These 
inter-dependencies are used to effectively link the 
various objects in the KB to create an object 
graph. Each leaf node of this object graph corre- 
sponds to a constant used to name a set (i.e., 
declared using the predicate basic-type). Internal 
nodes of this object graph such as the example 
object correspond to constants used to name rela- 
tions and functions (i.e., declared using the predi- 
cate type and ftype respectively). A fragment of 
the object graph that corresponds to the closed 
vocabulary is shown in fig. 3. 

PURCHASE COST 1 PURCHASE LEVEL 

PURCHASED AT 

RAW ] 
MATERIAL 

l PURCHASE ] TIME PERIOD 
LOCATION 

Fig. 3. An object graph. 

The value fillers of the first three slots associ- 
ated with an object are derived directly from the 
type, fdomain 3 and joint-domain declarations in 
PM. The close relationship between the object- 
based representation and the language is il- 
lustrated with a simple example. Consider the type 
declaration in PM of the purchased-at predicate 
shown below. 

type (purchased-at, [raw-material, purchase-loca- 
tion, time]) 

The declaration relates the object constant 
purchased-at to a list of object constants that 
define its domain. This list of object constants is 
used as the filler of the related-objects slot of the 
purchased-at object. 

The next two slots, inv-related-to-pred and inv- 
related-to-dis, represent the "inverse" of the link- 
ages represented in the related-objects slot. These 
slots represent the set of all object constants whose 
type / fdomain / jo in t -domain  declarations contain 
the object under consideration. Thus for example, 
the purchased-at object would be part of the in- 
verse pointer slots of the raw-material, purchase- 
location and time objects. Specifically, the inverse 
pointers associated with an object, say Y, in the 

2 The term objects is used in the object-oriented programming 
sense. While the objects we use in PDM resemble frames in 
their use of slots and procedural attachments, no use is made 
of either inheritance or defaults. 

3 fdomain and joint domain are declarations in PM. While 
fdomain explicitly relates functions to its domain, joint-do- 
main relates three relations X. Y and Z such that X names 
the join of the relations named by Y and Z. 
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object graph can be defined set theoretically as 
shown below. 

Inv(Y) := (X: type (Y, L) & X ~ L I fdomain (Y, 
X) I joint-domain (Y, U, V) & X = U 
or V) 

This set of inverse pointers is partitioned into two 
non-disjoint sets as a function of the problem 
contexts that arise in PDI planning. Thus, the 
inv-related-to-prod slot of the purchased-at object 
that represents the inverse pointers in the produc- 
tion planning context has a filler that consists of 
purchase-level and purchase-cost while the equiv- 
alent inv-related-to-dis slot for the distribution 
planning context additionally consists of the ship- 
ping-plan object. The rationale is that while distri- 
bution contexts may involve both purchase and 
shipping, production contexts only involve 
purchase. This partitioning of the inverse pointers 
as a function of the problem context enables the 
selective traversal of objects in the object graph as 
a function of problem context enabling a focussed 
and structured dialogue process. 

Inverse pointers enable traversal of the object 
graph in a "bottom-up" manner; i.e., from leaf 
nodes that correspond to sets to internal nodes 
that correspond to relations and functions. This 
ability is particularly important since the dialogue 
begins in the context of objects that correspond to 
sets and proceeds to contexts represented by ob- 
jects that correspond to relations and functions. 
This is in keeping with the intuitive transition of 
dialogue about simple concepts to interaction 
about more complex concepts. 

While the first three slots represent syntactic 
inter-dependencies, the fourth slot, process-rela- 
tions, represents domain-specific axioms. It so 
happens that these axioms about the domain are 
of a simple structure that facilitates their represen- 
tation via a slot. Consider the example shown 
below. 

If purchased-at (X, L, T) then stored-at (X, L, T) 
or supplied-from (X, L, T) 
or 3P used-in (X, P, L, T) 

The axiom is non-horn and states that if a 
commodity X is purchased at a given location 
then it is either stored at that location, supplied 
from that location or used in a production process 
housed in that location. The process-relations slot 
represents the list of processes related to the 

purchase process, enabling the system to bring 
these related processes to the attention of the user. 
Finally, the last two slots represent procedural 
knowledge that implements the logic used in the 
dialogue and model revision process. Each of these 
slots have rule-action facets. In contrast to the 
value facets used in the first four slots, rule-action 
facets are active facets (much like the if-needed 
facets in traditional frame-based systems) that en- 
code Prolog procedures. In the example, the slots 
to-fill-in and if-confirmed have rule-action facets 
which represent the procedures should-we-proceed 
and perform-tasks. The logic implemented in these 
facets is described later. Each object in the KB is 
implemented in Prolog as a set of clauses. A 
fragment of the purchased-at object used as an 
example is shown below. The general notation 
used is 

(object-name) ((slot-name), (facet-name), 
(value-filler)) 

Where value-filler is either a list of objects, an 
object or a Prolog procedure. Thus the purchased- 
at object is represented as shown below. 

purchased-at (related-objects, value, [raw-material, 
purchase-location, time]) 

purchased-at (to-fill-in, rule-action, should-we- 
proceed) 

The next section describes the control logic 
used to manage the generation of dialogue. 

3.3.1 Dialogue generation 
The primary responsibility of the dialogue gen- 

eration module is to interactively aid the user in 
defining the logic model of the problem. This is 
done by generating hypotheses (dialogue) in the 
context of situations, entities and relationships 
that characterize PDI planning. The traversal of 
the object graph to generate dialogue is performed 
in a bottom-up manner and characterized by two 
important steps: 

(a) Queries are generated initially in the context 
of the leaf nodes (i.e. the sets) of the object graph. 
These queries are aimed at identifying the various 
types of entities in a particular planning problem 
and ascertaining the existence of relationships be- 
tween these types of entities. They are referred to 
as askable queries since the information they ob- 
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rain from the user is not inferable. An example is 
shown below. 

What are the different types of product produced 
in the system? 
I: steel 
Please supply the elements of the set "steel" 
[: ]stainless-steel, tensile-steel] 

The first query requests the specification of 
different types of products to which the user iden- 
tified steel as the only type. The next query re- 
quired the user to enumerate the elements of the 
set steel. User responses are translated into PM 
sentences. The sentences asserted in response to 
this interaction are shown below. 

subtype (steel, product) 
ins-of (steel, [stainless-steel, tensile-steel]) 

(b) Responses to the askable queries form the 
kernel of the evolving PM specification of the 
problem. Domain-specific axioms (such as those 
represented in the process-relations slot) and other 
rules encoded as procedures are used to hypothe- 
size situations implied by the evolving PM specifi- 
cation. Hypothesis that are confirmed by the user 
result in additions to the PM specification. For 
instance, assume that the user already indicated 
that coal is purchased at coal mines. The domain- 
specific axiom represented in the process-relations 
slot of the purchased-at object is used to hypo- 
thize the set of processes related to the purchase 
process. The user is required to confirm the ex- 
istence of one or more of these related processes. 
The axiom and associated dialogue are shown 
below. 

if purchased-at (X, L, T) then stored-at (X, L, T) 
or supplied-from (X, L, T) 
or 3P used-in (X, P, L, T) 

The axiom states that if a commodity is purchased 
at a location, it is either stored or supplied from 
that location or used in production at the same 
location. This axiom results in a series of queries 
to the user. 

is coal stored at the coal mines? ( Y / N )  
is coal supplied-from the coal mines? ( Y / N )  
is coal used in production at the coal mines? ( Y / N )  

The illustrated use of domain axioms to guide 
user interaction is a novel feature of PDM and a 
measure of the power to be gained from a 

domain-specific approach. Furthermore, the re- 
quirement that the user identify at least one re- 
lated process as relevant prevents several simple 
infeasibilities that arise in problem specifications 
due to errors of omission. 

The "bo t tom up" traversal of the object graph 
has been implemented using an agenda scheme 
(Lenat, 1976). 

Agenda-based Control: An agenda-based con- 
trol strategy employs a queue to order the tasks at 
hand. In our context, the flow of dialogue is 
initiated and controlled by the addition of objects 
in the object graph to the queue which might then 
be sampled under a variety of queuing disciplines. 

A significant advantage of the agenda scheme 
is the ability to tune the order in which objects are 
sampled thereby effecting control over the flow of 
dialogue. The interpreter is implemented as a sim- 
ple recursive procedure in Prolog as shown below. 

interpret ([]). 
interpret ([H IT]):- process-frame (H, T, Current), 

interpret (Current). 

The first clause represents the base case of the 
recursion and indicates that the interpreter halts 
when the agenda is empty. The second clause 
implements a FIFO (First In First Out) policy and 
considers the first object in the agenda using the 
procedure process-frame. This procedure activates 
the procedures in the to-fill-in and if-confirmed 
slots of the object under consideration. These pro- 
cedures decide on dialogue generation and upon 
completion queue in objects in their appropriate 
inverse slots into the agenda thus ensuring the 
flow of dialogue. Changes to the agenda status are 
determined and the procedure recurses on a new 
binding of the agenda status. 

In the context of our object graph, dialogue is 
initially generated in the leaf nodes. Upon com- 
pletion, interior nodes that are part of inverse slots 
of the leaf node are added to the agenda resulting 
in the continued generation of dialogue among 
interior nodes. Dialogue generation halts when the 
agenda is empty. 

Dialogue Generation: An important feature of 
the dialogue generation process is the need to 
generate dialogue in vocabulary familiar to the 
user. We have adopted a simple strategy to effect 
this feature. 

Dialogue is generated by procedures attached 
to the to-fill-in and the if-confirmed slots of an 
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object. These procedures contain inference rules 
and templates of text. An example of a rule used 
to generate dialogue in the context of the 
purchased-at object is shown below. 

If X is a type of raw-material and 
If Y is a type of purchase-location 
If Z is a type of time-period 
Then ascertain the existence of a relation between 

X, Y, and Z 

The variables X, Y etc. are bound to user-supplied 
predicates that describe objects and processes 
specific to the problem at hand. These variables 
are combined wilh a template of text to generate 
dialogue using vocabulary previously supplied by 
the user. An example template is shown below. 

is ?X purchased-at ?Y in Z? 

The ?X denotes variables that are to be bound. 
Templates that have instantiated variables result 
in text. Thus ?X being bound to coal and ?Y to 
coal-mines and ?Z to weeks results in the dialogue 
shown below. 

/ *  Comments are enclosed within these symbols 
*/ 

is coal purchased-at coal-mines in weeks? (yes /no)  
l: yes 
Please supply a unique name to this relation 
I: coal-purchase-plan 
/ * The PM sentence corresponding to this answer 

is * /  
/ *  type (coal-purchase-plan, [coal, coal-mines, 

weeks]) * /  

The first line of the dialogue queries the existence 
of a relation between coal and coal-mines which 
were user-supplied descriptions of objects and lo- 
cations in his particular problem. Having ascer- 
tained the existence of the relation, the user is 
required to supply a name for the relationship and 
tuples that represent instances of the relation. As 
the dialogue proceeds, such interaction results in 
sentences in PM being asserted. These type of 
questions are generated for each combination of 
objects that satisfy the dialogue generation rules. 

A useful feature of the dialogue system is the 
ability to save the state of the agenda and object 
graph midway through problem description. While 
saving the state of the queue suffices to save the 
state of the agenda, the state of the object graph is 
saved using a system of markings. Each object 

which has been investigated (i.e. dialogue genera- 
tion having resulted in the addition of PM 
sentences) is marked. This allows the interpreter 
to skip over marked objects when user interaction 
is continued at a later time to prevent the redun- 
dant generation of dialogue. The important ad- 
vantage of being able to save the state of the 
agenda and the object graph is the ability to work 
with the PDM system as and when desired. 

The algorithm used to control the flow of di- 
alogue is presented below. 

ALG Process: 
Do while agenda is not empty; 
choose object from agenda 
if object is m a r k e d / *  if 1 * /  
then queue objects in the inverse-relation slot 
based on problem 
context to the agenda and delete object from 
a g e n d a / *  end if 1 * /  
if object is u n m a r k e d / *  if 2 * /  
then 

if objects in its related-objects slot are marked 
/ *  i f3  * /  

then invoke perform-task and 
if new PM sentences are added / *  if 4 * /  
then mark object and queue in objects in 

inverse-relation slot 
else queue in objects in inverse-relation slot 

and 
delete object from agenda / *  end if 4 * /  

else delete frame from agenda / * end if 2, 3 * /  
End Do While; 

Limitations: While the dialogue system amply 
demonstrates the functionality to be gained from a 
knowledge-based tool, a state of the art 
graphics/icon driven system would be far more 
user-friendly. 

3.3.2. Mode l  revision 

Model specifications are constantly revised as 
assumptions that underlie problem specifications 
change. These changes in assumptions about the 
problem being modeled typically result in ad- 
ditions a n d / o r  deletions of sets, relations and 
functions or in additions and deletions of their 
respective elements. This alteration of an existing 
problem specification has been termed model revi- 
sion. 

Since elements that make up the problem 
specification are tightly inter-related, a change in 
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one part tends to affect other parts. This implies 
the need to control and manage the process of 
propagating local changes throughout a problem 
specification. Propagation of changes requires the 
explicit representation of inter-dependencies be- 
tween problem elements. The object graph (i.e. the 
KB) in PDM supports model revision since it 
encodes the syntactic inter-dependencies between 
elements that make up the problem specification. 
It is used in conjunction with the agenda-based 
scheme described in the previous section to effect 
propagation of local changes. Consider a fragment 
of a production planning problem in PM. The 
sentences have been labelled for ease of reference. 

sent1: subtype (steel, product) 
sent2: subtype (open-hearth, production-process) 
sent3: subtype (oxygen, raw-material) 
sent4: subtype (oxy-used-in-open-hearth, used-in) 
sent5: type (oxy-used-in-open-hearth, [oxygen, 

open-hearth, mill, year]) 

The PM specification describes the usage of 
oxygen in the open-hearth process used in steel- 
production. Now if the open-hearth process de- 
clared in sent2 were to be removed from the 
problem specification, the sentences labelled sent4 
and sent5 should also be deleted since they are 
directly or indirectly related to the deleted object 
constant. Since each user-supplied object constant 
is related to a object constant of the closed vocab- 
ulary (i.e. an object in the object graph), propa- 
gation of deletions is implemented using a selec- 
tive traversal of the object graph. 

This traversal begins by accessing the object in 
the graph related to the user-supplied predicate 
being deleted. In the example since open-hearth, 
the predicate being deleted is a production-pro- 
cess, an object in the object graph, the 
production-process object is accessed and all the 
objects in its inverse-relation slot are queued into 
the agenda. These objects correspond to object 
constants of the closed vocabulary that are di- 
rectly dependent on the production-process object. 
The interpreter examines those objects that are 
marked (recall that marked objects correspond to 
object constants of the closed vocabulary that are 
part of the current PM specification) and deletes 
all PM sentences which contain a marked object. 
To ensure continued propagation, objects in its 
(the object under consideration by the interpreter) 

inverse-relations slots are also added to the agenda. 
Processing halts when the agenda is empty. 

The principal advantage of this approach is its 
focus of attention on only that part of the prob- 
lem specification that needs to be changed. This is 
an important factor in the context of large specifi- 
cations where a brute force search for sentences 
that need to be deleted may be infeasible. 

In addition to this ability to propagate dele- 
tions, PDM also supports the addition of new sets 
and relations. When new sets or relations are 
added, there is a need to focus the users attention 
on the ramifications of the addition. For example, 
if a new type of product is added, new relation- 
ships have to be defined with existing production 
processes and other relevant objects involved in 
processes such as sales or storage. Once again the 
object graph and the agenda scheme are em- 
ployed. When a user-supplied set or relation is 
added to an existing specification, the object of 
the closed vocabulary that it is related to (an 
object in the object graph) is queued into the 
agenda. The generation of dialogue is similar to 
that described previously with one major dif- 
ference. Before any dialogue is generated in the 
context of any object in the object graph, a com- 
parison is made between situations that are hy- 
pothesized and those that already exist in the PM 
specification. This prevents the redundant genera- 
tion of dialogue. Once again due to the explicit 
representation of dependencies in the object graph, 
the process is focussed with only the minimal 
number of queries being generated. 

This ability to revise model specifications is an 
important feature in PDM due to the flexibility 
offered to the user. Additionally, it also supports 
structural revision of the LP model since structur- 
ally revised PM specifications yield structurally 
revised LP model schema. This is particularly im- 
portant since currently available LP modeling sys- 
tems do not support this feature 

4. Model construction 

Linear Programming (LP) models are algebraic 
models. The construction of an algebraic model 
from a qualitative model requires the representa- 
tion and application of model building knowledge. 

This, in PDM, has been effected using a small 
set of domain-independent modeling principles 
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such as material balance and resource utilization. 
The principal insight used in model construction 
derives from the observation that all the measure- 
ment functions a used in the qualitative model to 
represent numeric attributes are directly trans- 
formable to variables and parameters of the alge- 
braic model. The model building rules are strictly 
concerned with determining the functional form 
of the mathematical relationships that relate these 
variables and parameters. 

Model building rules such as the material bal- 
ance rule shown below represent generic types of 
mathematical relationships. These generic rela- 
tionships are encoded in terms of domain-inde- 
pendent abstractions referred to as canonical ob- 
jects. 

If [X] is a list of inputs to a system and 
If [Y] is a list of outputs to a system 
Then the sum of the set of inputs _> sum of the 

set of outputs 

Model building requires these rules to be applied 
to a PM specification. However, the lack of a 
common vocabulary presents a problem, i.e., 
model building rules are stated in terms of canoni- 
cal objects while PM specifications are stated in 
terms of problem-specific vocabulary. This has 
been resolved by adopting a simple two step pro- 
cedure. First all problem specific objects, processes 
and attributes that make up the PM specification 
are transformed into canonical objects. Rules used 
for this task are referred to as transformation 
rules. The canonical objects so generated are com- 
bined using the model building rules into alge- 
braic functions and constraints that make up the 
schema of the LP model. 

While the foregoing presented the synopsis of 
the logic used in model construction, the imple- 
mentation in PDM takes account of certain other 
problems. Specifically, model building in PDM 
proceeds at two distinct levels: the construction 
level and the meta construction level. The applica- 
tion of transformation rules and model building 
rules take place at the construction level. How- 
ever, these tasks at the construction level are con- 
trolled using meta-rules that encode knowledge 
about the order or sequencing of rule application. 

4 Examples  o f  m e a s u r e m e n t  func t i ons  are  p roduc t ion - l eve l ,  
u t i l i za t ion- ra te  etc. 

Meta-rules are essential to ensure correctness in 
model building and serve to improve the efficiency 
of the model building process. The following il- 
lustrates with a simple example, the knowledge 
representation and model building strategy em- 
ployed in each of these levels. 

Example 
Consider a simplified steel production process 
which uses various types of coal to produce several 
types of steel. Assume that the production of each 
unit of steel utilizes a fixed amount of coal. Let its 
value be given by the parameter, coal-util-rate. 
Coal is supplied via purchase and let the variable 
coal-purchase-level represent the amount of coal 
purchased. Finally let the steel production level be 
measured by the variable steel-production level. 

Given this fragment of simple problem, the 
capacity constraint for coal that we seek to gener- 
ate is modeled using material balance resulting in 
the capacity constraint shown below. 

sum(S) sum(P) (coal-util-rate (C, P, L, T) * 
steel-production-level (S, P, L, T)) _< 
coal-purchase-level (C, L, T) 

The letters S, C, P, L and T correspond to 
indices for the sets steel, coal, production process, 
location and time-period. 

The equivalent qualitative model of the prob- 
lem in PM is shown below. 

subtype (coal, raw-material) 
subtype (steel, product) 
subtype (coal-usage, used-in) 
type (coal-usage, [coal, steel-production-process, 

mill, years]) 
ftype (coal-util-rate, [coal, steel-production-pro- 

cess, mill, years), [real-number]) 
fsubtype (coal-util-rate, utilization-rate) 
ftype (steel-production-level, [steel, steel-produc- 

tion-process, mill, years), [real-number]) 
fsubtype (steel-production-level, activity-level) 

The differences in the representation of the 
problem in PM and quantitatively as an algebraic 
model are significant. The PM representation sim- 
ply declares the type of steel, coal and the produc- 
tion process and declares the relations and func- 
tions that characterize the problem. On the other 
hand, the algebraic constraint represents a 
mathematical relationship between numeric varia- 
bles and parameters. The following briefly demon- 
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Fig. 4. Meta rules. 

strates the steps used to construct the material 
balance constraint from the PM specification. 

First since the context of the problem is pro- 
duction planning, a meta-rule at the meta con- 
struction level is used to suggest the application of 
a "transformation-in-form" rule denoted fig. 4 as 
the production rule base. 

The "transformation in form" rule is based on 
a generic resource utilization process and relates 
the utilization-rate of a resource commodity that 
is input to a production process to the production 
level of the commodity produced as output of the 
same production process. The rule 5 is shown be- 
low. 

If utilization-rate (X, R, RU, P, L, T) and activ- 
ity-level (PL, RU, P, L, T) 

and index (X, IR) and index (PL, IPL) and 
index (P, IP) and 
index (R, Iru) and subtype (Dom, utilized-at) 
and 
type (Dom, [R, L, T)) 

5 The collection of model building rules may be found in 
Appendix A (available from the author). 

then gensym (RUL, utilization-level) and 
fsubtype (RUL, process-level) and fdomain 

(RUL, Dora) and 
RUL := sum(Iru) sum(IP) (X : IR * PI: IPL) 

The rule constructs the function RUL from 
canonical objects that are instances of the utiliza- 
tion-rate and activity-level objects. The applica- 
tion of , this  domain-independent rule to a PM 
specification requires the application of transfor- 
mation rules to the PM specification. The collec- 
tion of transformation rules associated with model 
building rules is referred to as a rule base or rule 
set. 

The exact details of the transformation rule 
application are detailed and space limitations pre- 
vent a full-fledged description. The reader is re- 
ferred to Krishnan (1988) and Krishnan (1987) for 
an indepth discussion of transformation rules. The 
idea behind transformation rules is simple. Essen- 
tially these rules encode knowledge about the rela- 
tionships between the domain-specific processes 
that underlie the problem specification in PM and 
the generic processes that underlie the model con- 
struction rules. They yield instances of canonical 
objects as output. Thus, in the context of our 
example, the transformation rules recognize the 
steel-production-process as a process that utilizes 
coal as a resource to produce steel. After a series 
of transformations this leads to the generation of 
steel-production-level as an activity-level object 
and the coal-util-rate as an utilization-rate object. 
They are shown below. 

steel-production-level 
canonical-object-type: 

value : activity-level 
context: 

value: [s, p, 1, t] 

coal-util-rate 
canonical-object-type: 

value : utilization-rate 
context: 

value : [c, p, 1, t] 

An important feature of these canonical objects 
are their context slots that represent index infor- 
mation. The assignment of indices to the elements 
of a PM specification is performed by index as- 
signment procedures that are also activated by 
meta rules. Essentially, the strategy used in index 
assignment is as follows. Each set is assigned a 
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unique symbol as index. These indices may either 
be supplied by users or provided by the system. 
Indices of named relations and functions are de- 
rived from index information associated with the 
sets that define their domain. An example is shown 
below. 

if type (N-pred, [A1 . . . . .  An]) and index (A1, IA1) 
and 

and . . ,  and index (An, IAn) 
then index (N-pred, [IA1, IA2 . . . . .  IAn]) 

Thus type and ftype declarations in PM prove 
useful in index assignment. Indices set the context 
of an object and are used to determine if two or 
more objects can be combined by a given model 
building rule. The objects steel-production-level 
and coal-utilization-rate are combined using the 
transformation-in-form rule introduced previously 
to yield a new canonical object which encodes the 
left hand side (LHS) of the constraint we are in 
the process of constructing. The function built 
using the "transformation-in-form" rule and the 
canonical object that encodes it are shown below. 

coal-utilization-level (c, 1, t) = sum(s) sum(p) 
(coal-util-rate (c, p, 1, t) * 
steel-production-level (s, p, 1, t)) 

coal-utilization-level 
canonical-obj ect-type: 

value: activity-level 
context: 

value: [c, 1, t] 
function: 

value: [[sum, [s, p]], [coal-rate, [c, p, 1, t]], 
[* ], [production-level, [s, p, 1, t]]] 

The object is similar to the objects introduced 
earlier with one major exception. It has a function 
slot which encodes the LHS of the Constraint 
under construction. 

Upon completion of the model building rule 
application, control transfers once again back to 
the meta-level which suggests the application of 
the material balance rule. Once again the transfor- 
mation rules associated with material balance are 
applied to the PM specification to yield coal-utili- 
zation-level, the canonical object described above, 
as an output object and the coal-purchase-level as 
an input object. The coal-purchase-level object is 

shown below. 

coal-purchase-level 
canonical-object-type: 

value : output 
context: 

value: [c, 1, t] 

These objects are combined using the material 
balance rule since they represent inputs and out- 
puts of the commodity coal to a system (the 
indices in the objects are used to ensure similarity 
in contexts) into the capacity constraint being 
constructed. This yields the constraint for coal 
shown below. 

coal-utilization-level (c, m, t) < coal-purchase-level 
(c, m, t) 

The constraint is similar to the one derived 
earlier except that the LHS in the constructed 
constraint is itself a function that was defined 
earlier. 

Three concluding remarks are in order. First, 
meta-rules were used to sequence the application 
of the model building rules and their associated 
rule sets as a function of the problem context, i.e., 
since the context was production planning, only 
the resource utilization and material balance rules 
and their associated transformation rules were 
activated. This results in significant gains in ef- 
ficiency since rule sets tend to be large and trans- 
formation to yield canonical objects involves sig- 
nificant amount of chaining. Second, the construc- 
tion process used is "bo t tom up". That is con- 
straints are built from left hand sides (LHS) and 
right hand sides (RHS) using the material balance 
rule. The LHS and the RHS themselves may be 
functions constructed through previous rule appli- 
cations. This is illustrated in our example where 
the LHS was a resource utilization function built 
from primitive canonical objects using the "trans- 
formation-in-form" rule. The generic "bot tom-up"  
procedure used in constraint building is depicted 
in Fig. 5. 

An important implication of this "bo t tom up" 
approach to model building is the need to se- 
quence the application of the model building rules 
since the input 6 of one rule is dependent on the 

6 In the example, the material balance rule used the coal-utili- 
zation object that was the output of the "transformation-in- 
form" rule as an input in constraint construction. 
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Fig. 5. Model construction strategy. 

output of another to ensure correctness. Thus meta 
rules serve to ensure correctness of model building 
and to increase the efficiency by only invoking 
relevant rule sets. Meta rules thus serve an im- 
portant role in that they explicitly represent 
"model  construction" know how. In being the sole 
repository of such knowledge they support the 
alteration and manipulation of it in the event of 
change. 

An important aspect of the model building 
strategy that we have not discussed as a result of 
space limitations is the role of transformation 
rules. Transformation rules are used to transform 
elements of the PM specification to canonical 
objects. This process is straightforward or com- 
plex depending on the availability of a rule/rules 
specific to the situation being modeled by the PM 
specification. If directly applicable rules exist, the 
transformation process is straightforward. How- 
ever, in the absence of directly applicable rule sets, 
PM problem specifications are augmented with 
additional variables and decomposed into situa- 
tions for which directly applicable rule sets are 
available. A common example of this case include 
transhipment processes which are augmented with 
additional variables into transportation processes 
and material balance processes for which directly 
applicable rules exist. This process of diagnosing 
situations that need augmentation and decompos- 
ing them into situations that are transformable 
into canonical objects is an important non-trivial 
feature of transformation rules. The interested 
reader is referred to Krishnan (1987, 1988) for a 

detailed description of the model construction 
process. 

5. Conclusions 

The main contribution of this paper has been 
the description of two key modules in the PDM 
system with an emphasis of the structure and 
content of the knowledge employed to effect user- 
interaction, model revision and automatic model 
construction. The novel features in PDM that 
were detailed included a description of the close 
interaction between the object-oriented system 
employed in the front end and the logic-based 
language PM used in problem representation, the 
use of domain-specific axioms to guide user inter- 
action, and the application of domain-indepen- 
dent model building rules to simulate a "first 
principles" approach to automated model con- 
struction. 

There are two principal limitations in PDM. 
First, the user interaction system is textual and 
cumbersome and a graphics based tool would 
greatly help the type of non-expert users that 
PDM hopes to support. Another limitation is the 
restriction to linear models and the PDI planning 
domain. An useful extension would be a domain- 
independent logic modeling language that would 
be used to specify mathematical and qualitative 
models within an uniform framework. Research is 
underway on all these issues. 
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