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Performance-based budgeting has received increasing attention from public and for-profit organizations in
an effort to achieve a fair and balanced allocation of funds among their individual producers or operating
units for overall system optimization. Although existing frontier estimation models can be used to measure
and rank the performance of each producer, few studies have addressed how the mismeasurement by
frontier estimation models affects the budget allocation and system performance. There is therefore a need
for analysis of the accuracy of performance assessments in performance-based budgeting. This paper
reports the results of a Monte Carlo analysis in which measurement errors are introduced and the system
throughput in various experimental scenarios is compared. Each scenario assumes a different multi-period
budgeting strategy and production frontier estimation model; the frontier estimation models considered
are stochastic frontier analysis (SFA) and data envelopment analysis (DEA). The main results are as follows:
(1) the selection of a proper budgeting strategy and benchmark model can lead to substantial improvement
in the system throughput; (2) a ‘‘peanut butter’’ strategy outperforms a discriminative strategy in the
presence of relatively high measurement errors, but a discriminative strategy is preferred for small mea-
surement errors; (3) frontier estimation models outperform models with randomly-generated ranks even
in cases with relatively high measurement errors; (4) SFA outperforms DEA for small measurement errors,
but DEA becomes increasingly favorable relative to SFA as the measurement errors increase.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Performance assessment of production and services is becoming
an increasingly important managerial activity as public and for-
profit organizations turn to performance-based budgeting in an
effort to optimize the allocation of funds across their individual pro-
ducers. The performance-based budgeting technique is clearly
applicable and adaptable to many practical situations. One example
is the allocation of an energy conservation program budget and
assignment of appropriate energy quotas to the individual plants
in a global automotive manufacturing company. The common prac-
tice in setting energy quotas is to apply the peanut butter approach,1
in which the limited total budget is simply divided among individual
plants in proportional to their production sizes along with an equal
percentage of energy reduction quota (e.g., a 4% cut in the energy cost
per production unit from the previous year), without considering the
different energy saving potentials of the various plants. For example,
certain plants may already have implemented aggressive energy sav-
ing programs and reached a point of diminishing returns, while other
plants barely met (or even failed to meet) their allocated reduction
quotas in previous years, carrying the remaining energy saving poten-
tial over to the next year. In such cases, the peanut butter approach
may not serve to optimize the overall system performance or lead to
efficient use of a limited budget. It would be far more desirable to
allocate relatively low energy saving targets and low budgets to
best-practice plants while allocating aggressive energy saving targets
to inefficient plants along with high budgets to encourage major
changes in their energy conservation practices.

The effectiveness of performance-based budgeting depends on
the accuracy of the performance assessment in distinguishing
between best-practice and inefficient producers. There are two
major approaches to frontier estimation – stochastic frontier
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analysis (SFA) and data envelopment analysis (DEA). The consen-
sus in the performance benchmarking literature is that DEA is pref-
erable in applications in which the frontier model cannot be
expressed in algebraic form or does not have a known inefficiency
distribution. The SFA method is preferable when certain classical
assumptions are satisfied regarding the composite error terms,
including the contributions from the inefficiency distribution and
measurement errors. It has also been claimed that DEA has a
comparative advantage in cases involving relatively small mea-
surement errors due to the conceptual treatment of the errors,
while the complementary SFA method has the advantage when
the measurement errors are relatively high. A more thorough
assessment of the two frontier estimation models may help man-
agers responsible for performance-based budgeting to make more
informed decisions regarding the most appropriate method for
their particular circumstances.

Several studies have addressed the comparative advantages of
stochastic versus deterministic frontier estimation. Banker, Gadh,
and Gorr (1993) and Banker, Charnes, Cooper, and Maindiratta
(1987) compared the efficiency estimation accuracy of corrected
ordinary least squares (COLS) and DEA using Monte Carlo methods.
The results indicated that DEA outperformed COLS in most cases
and that COLS failed to distinguish between the measurement
error and inefficiency. However, both frontier models failed as
the measurement errors became large for all of the experimental
scenarios considered. These results contradicted the traditional
view favoring the use of stochastic frontier models. The DEA
method has been criticized previously for its neglect of measure-
ment errors; Greene (1993) even suggested that econometricians
have abandoned the deterministic frontier model because it does
not consider measurement errors. Gong and Sickles (1992)
demonstrated the superiority of the SFA approach using Monte
Carlo analysis; however, their results were criticized because of
their assumption that the efficiency of the firm remains constant
over time. In reality, the efficiency of a firm varies over time due
to a variety of exogenous and endogenous factors. Ruggiero
(1999) conducted another Monte Carlo analysis in which previous
comparative studies were extended to include more general exper-
imental scenarios and discovered that the deterministic frontier
model which ignores the impact of measurement error is not as
limited as the main criticism against the deterministic models sta-
ted negatively, but rather outperformed the stochastic frontier
analysis model from the average rank correlation perspective.

Mixed results have therefore been obtained concerning the
comparative advantages of stochastic versus deterministic frontier
estimation. Nonetheless, one consistent finding is that DEA
remains attractive as a frontier model, especially when the mea-
surement errors become large. The traditional criticism of DEA
based solely on the conceptual treatment of the errors should
therefore be reconsidered. Another consistent finding is that as
the measurement errors increase, the accuracy of the performance
measurement decreases in both models. However, very little
comparative research has been performed to date on how mismea-
surement by frontier estimation models impacts the capital
budget allocation and degree of system optimization.

Several studies in the DEA literature have addressed resource
allocation based on efficiency analysis using variants of the DEA
method. The goal of these studies is to balance the desires of two
management layers, a central management authority and a set of
operating units, by allocating the available resources in an optimal
fashion. The balance is achieved by adjusting the input and output
in such a way that the efficiency of each operating unit is
maintained (the desire of the operating units) while the total
output of units is maximized (the desire of the central manage-
ment). Korhonen and Syrjanen (2004) developed a formal interac-
tive approach based on DEA and multiple-objective linear
programming to identify the optimal allocation plan. In this
approach, the units are assumed to be capable of modifying their
production within a specified production possibility set. Yan,
Wei, and Hao (2002) extended the ‘‘inverse’’ DEA method by intro-
ducing preference cone constraints to allow decision makers to
incorporate their preferences into the resource allocation algo-
rithm. Li and Cui (2008) investigated an ‘‘efficient-effective-
equality’’ resource allocation framework consisting of a DEA-based
method leveraging many existing resource allocation algorithms.
However, these DEA-based resource allocation approaches assume
that sector-level decision making units are able to modify their
production plants in a timely manner following instructions from
the central management. In practice, this sort of rapid production
plan modification is only possible in service firms such as super-
market chains, banks, universities, hospitals and tourist agencies.
In the manufacturing industry, for instance, plants generally
require a long time to adjust to new production plans, and the time
required for a particular unit can vary depending on its operating
conditions.

DEA has many opportunities and challenges under the multi-
criteria environment. Mehdiabadi, Rohani, and Amirabdollahiyan
(2013) proposed a new approach to combine DEA and Order
Preference by Similarity to Ideal Solution (TOPSIS) to rank various
industries which is also a multiple criteria decision making prob-
lem. Das, Sarkar, and Ray (2013) extended the proposed approach
by Mehdiabadi et al. (2013) into fuzzy AHP–DEA-TOPSIS methodol-
ogy which is applicable to any multiple criteria decision making
problem due to its generic nature. Makui and Momeni (2012)
considered similarities between multi-criteria decision making
and DEA and tried to interpret decision makers preferences in
UTA-STAR method using the common set of weights (CSW) in DEA.

The purpose of this paper is to perform a Monte Carlo analysis
of different frontier estimation models combined with different
multi-period budgeting strategies and to provide a set of decision
rules for selecting the budgeting strategy and benchmark model
that are most appropriate for a specified set of circumstances.
Artificial measurement errors are included in the analysis.

The remainder of the paper is organized as follows. In Section 2,
a replication study is performed to ensure the reliability of previ-
ous comparative study results on stochastic versus deterministic
frontier estimation. Section 3 describes the experimental design
and introduces the budgeting strategies, scenario generation meth-
ods and time-varying efficiency model used in this paper. The
results of the experiments are presented in Section 4. An analytical
proof is provided for the fact that a peanut butter strategy outper-
forms a discriminative strategy in the presence of large measure-
ment errors, while the discriminative strategy is preferred when
the measurement errors are small. Section 5 concludes with a
summary of the findings of this study and suggestions for future
research directions.

2. Comparison of SFA and DEA

Previous findings from related studies indicate that DEA and
SFA have comparative advantages in the cases of small and large
measurement errors, respectively. However, the accuracy of both
frontier models decreases as the measurement error increases. A
replication study is performed in this section to assure the reliabil-
ity of these findings and to raise concerns regarding the use of fron-
tier estimation models for a performance-based budgeting system
in the presence of measurement errors.

Assume that a large organization includes multiple individual
producers and desires a systematic method for measuring and
comparing the performance of the various producers in the
organization, including cases in which the inputs and outputs of
the individual producers have different scales. The organization



Table 2
Rank correlation between the true efficiency and the DEA estimate.

DEA vs. true ðrv Þ

0.05 0.1 0.15 0.2 0.25 0.3 0.35

ru ¼ 0:1 0.52 0.34 0.25 0.19 0.12 0.17 0.11
ru ¼ 0:15 0.60 0.44 0.31 0.26 0.19 0.20 0.15
ru ¼ 0:2 0.65 0.50 0.43 0.34 0.30 0.25 0.23
ru ¼ 0:25 0.66 0.60 0.46 0.38 0.38 0.26 0.30
ru ¼ 0:3 0.69 0.64 0.51 0.46 0.37 0.35 0.32
ru ¼ 0:35 0.73 0.63 0.55 0.49 0.45 0.39 0.33

Table 3
Rank correlation between the efficiencies estimated using SFA and DEA.

SFA vs. DEA (rv )

0.05 0.1 0.15 0.2 0.25 0.3 0.35

ru ¼ 0:1 0.69 0.70 0.69 0.73 0.71 0.72 0.71
ru ¼ 0:15 0.73 0.73 0.70 0.71 0.72 0.74 0.72
ru ¼ 0:2 0.74 0.72 0.72 0.71 0.72 0.75 0.72
ru ¼ 0:25 0.73 0.74 0.73 0.73 0.75 0.72 0.73
ru ¼ 0:3 0.75 0.75 0.75 0.75 0.72 0.72 0.75
ru ¼ 0:35 0.77 0.76 0.75 0.76 0.73 0.73 0.73

Table 4
MAD of true minus SFA-estimated efficiencies.

True vs. SFA (rv )

0.05 0.1 0.15 0.2 0.25 0.3 0.35

ru ¼ 0:1 0.036 0.058 0.084 0.113 0.139 0.166 0.214
ru ¼ 0:15 0.038 0.063 0.090 0.104 0.134 0.171 0.223
ru ¼ 0:2 0.043 0.064 0.091 0.125 0.158 0.178 0.204
ru ¼ 0:25 0.046 0.068 0.098 0.125 0.159 0.158 0.224
ru ¼ 0:3 0.049 0.072 0.101 0.134 0.140 0.181 0.204
ru ¼ 0:35 0.048 0.071 0.095 0.122 0.163 0.164 0.213

Table 5
MAD of true minus DEA-estimated efficiencies.

True vs. DEA (rv )

0.05 0.1 0.15 0.2 0.25 0.3 0.35

ru ¼ 0:1 0.041 0.071 0.098 0.129 0.152 0.175 0.187
ru ¼ 0:15 0.047 0.073 0.100 0.127 0.151 0.173 0.188
ru ¼ 0:2 0.052 0.077 0.102 0.131 0.154 0.176 0.188
ru ¼ 0:25 0.057 0.077 0.104 0.130 0.151 0.176 0.196
ru ¼ 0:3 0.062 0.081 0.105 0.131 0.154 0.179 0.190
ru ¼ 0:35 0.068 0.087 0.107 0.132 0.151 0.175 0.190

Table 6
MAD of SFA minus DEA estimated efficiencies.

SFA vs. DEA (rv )

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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may use the performance information to identify opportunities for
greater efficiency and to increase the overall system throughput
and competitiveness. For simplicity, it can be assumed that each
producer employs the same production process and therefore has
the same production function. In this study, the Cobb-Douglas
function for the n-th producer in the organization is assumed to
have one output y, and two inputs, x1 and x2, assuming constant
returns of scale although our mathematical analysis is independent
of the returns of scale:

yn ¼ 2x0:4
1n x0:6

2n : ð1Þ

This functional form is in accordance with the models of Aigner and
Chu (1968) and Ruggiero (1999). The inputs were generated ran-
domly from a uniform distribution on the interval from 5 to 15.
To express the difference between the actual production and fron-
tier more realistically, the terms un and vn are introduced into the
translog form of Eq. (1), where un represents the half-normally
distributed [jNð0;r2

uÞj] inefficiency and vn denotes the normally
distributed [Nð0;r2

vÞ] measurement error (including the data collec-
tion/reporting error and all other effects that are not accounted for
in the analysis). The stochastic production frontier extending Eq. (1)
to be used throughout this paper is then as follows:

ln yn ¼ ln 2þ 0:4 ln x1n þ 0:6 ln x2n � un þ vn: ð2Þ

Eq. (2) gives the actual production of producer n, while Eq. (1) rep-
resents the best practice for product n. To distinguish yn in Eq. (1)
from yn in Eq. (2), yn in Eq. (1) will henceforth be denoted by ŷn.
In Eq. (2), a firm-specific estimate of the Farrell efficiency is given
by e�un . For example, when un is assumed to be half-normally
distributed according to jNð0;0:252Þj, the mean inefficiency is

0:2 � 0:25
ffiffiffi
2
p

=
ffiffiffiffi
p
p� �

and the efficiency of a firm with the mean

inefficiency becomes 82%ð� e�0:2Þ. The study in this section consid-
ered six inefficiency distributions in which the value of r2

u was var-
ied between 0:1;0:15;0:2;0:25;0:3, and 0:35. Seven measurement
error distributions were considered with r2

v taking values of
0:05;0:1;0:15;0:2;0:25;0:3, and 0:35. With six inefficiency distribu-
tions and seven measurement error distributions, a total of 42
experimental combinations were generated. In this short replica-
tion study, the sample size was restricted to 100. The ‘‘Benchmark-
ing’’ package in R (Bogetoft & Otto, 2010) is used to implement the
SFA and DEA.

The results of the Monte Carlo analysis are shown in Tables 1–6.
This study uses two different performance metrics to evaluate the
performance of SFA and DEA. The Spearman rank correlation is
used by following Gong and Sickles (1992) and Ruggiero (1999)
and also, MAD (mean absolute deviations) is used by following
Banker et al. (1993). Therefore, Table 1 reports the average rank
correlations between the true and SFA-estimated efficiencies.
Tables 2 and 3 report the average rank correlations between the
true and DEA-estimated efficiencies and between the SFA and
DEA estimates, respectively. Similarly, Table 4 reports the MAD
of true minus SFA-estimated efficiencies. Tables 5 and 6 report
Table 1
Rank correlation between the true efficiency and the SFA estimate.

SFA vs. true ðrv Þ

0.05 0.1 0.15 0.2 0.25 0.3 0.35

ru ¼ 0:1 0.67 0.45 0.34 0.24 0.16 0.18 0.15
ru ¼ 0:15 0.77 0.59 0.44 0.33 0.24 0.26 0.19
ru ¼ 0:2 0.84 0.66 0.56 0.41 0.39 0.32 0.26
ru ¼ 0:25 0.86 0.75 0.61 0.52 0.46 0.36 0.35
ru ¼ 0:3 0.88 0.79 0.66 0.58 0.50 0.44 0.39
ru ¼ 0:35 0.90 0.81 0.71 0.61 0.55 0.48 0.44

ru ¼ 0:1 0.035 0.056 0.081 0.100 0.127 0.164 0.186
ru ¼ 0:15 0.040 0.063 0.085 0.098 0.123 0.156 0.192
ru ¼ 0:2 0.047 0.064 0.082 0.116 0.145 0.158 0.178
ru ¼ 0:25 0.055 0.067 0.091 0.114 0.146 0.143 0.203
ru ¼ 0:3 0.059 0.071 0.094 0.130 0.138 0.167 0.188
ru ¼ 0:35 0.066 0.079 0.097 0.119 0.146 0.153 0.200
the MAD of true minus DEA-estimated efficiencies and SFA minus
DEA-estimated efficiencies, respectively. All results are based on
100 replications. Three interesting results were obtained in this
brief replication study.
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First, SFA outperforms DEA regardless of the values adopted for
the inefficiency and measurement errors (see Tables 1 and 2) when
the rank correlation is used. Note that the higher correlation means
the higher accuracy in the tables. Meanwhile, when MAD is used,
the results show that the MAD of true minus SFA is smaller than
that of DEA in the presence of small measurement errors
(rv 6 0:15), but the result is reversed for large measurement errors
(rv P 0:35) (see Tables 4 and 5). In the middle range of measure-
ment errors (0:2 6 rv � 0:3), the MAD-based performances are
mixed with two methods competing neck and neck. Since the
smaller MAD is the more accurate, the results implies that SFA-
estimated efficiency score is closer to the true efficiency than
DEA in case that small measurement errors are present, but the
result is reversed with large measurement errors. From this obser-
vations, it is found that the efficiency scores of SFA and DEA are
sensitive to the change of magnitude of measurement error, lead-
ing to the plausibility of incurring severe mismeasurement. In
the light of comparison with Banker et al. (1993), this results are
consistent with theirs when the measurement errors is large. It
also should be noted that since what they compared with DEA is
not SFA but COLS2 and furthermore SFA is considered more
advanced than COLS in terms of separating noise from inefficiency,
their results suggesting that DEA outperforms COLS make sense.

Second, the SFA and DEA estimates are highly correlated (stay-
ing around 0.7) in terms of their rank order regardless of the inef-
ficiency and random error variation (see Table 3). This high
correlation between the SFA and DEA estimates implies that the
ranks in SFA and DEA are likely to be consistent and less fluctuate
for varying measurement error, carrying both good and bad news
for modelers. The good news is the degree of consistency between
the two models, demonstrating the feasibility and robustness of
the model estimations (Agrell & Bogetoft, 2007). The bad news is
that it is difficult to use two complementary models to detect prob-
lems such as outlier presence or dominance in DEA or type-II error
occurrence in SFA. In detail, when the DEA frontier estimate is
biased high because of outlier data lying beyond the true frontier,
the DEA method erroneously extends the estimated frontier out-
ward. If the SFA method can distinguish between the inefficiency
and noise with sufficient accuracy, then this method can be used
in a complementary fashion to detect the DEA outlier problem.
Similarly, DEA can be used in a complementary manner to detect
the type-II error in SFA when the SFA frontier line reduces to a
standard linear regression line. On the contrary, the MAD of SFA
minus DEA efficiency scores increases from 0.035 to values greater
than 0.2 as the measurement errors increases (see Table 6). The
increasing MAD of SFA minus DEA efficiency scores means that
although the accuracy in terms of efficiency scores deteriorates
in both SFA and DEA, the deterioration of SFA is much faster than
DEA because SFA is more sensitive to the change.

Third, the accuracy of the performance rank order in both mod-
els deteriorates significantly as the measurement errors increase.
This third finding raises questions regarding the use of frontier
estimation models in the presence of measurement errors, espe-
cially when a performance-based budgeting system is designed
to allocate budgets to individual producers based on their results
(e.g., performance ranks, efficiency scores). The impact of mismea-
surement on future system performance and throughput
potentials is also uncertain. In subsequent sections, the impact of
mismeasurement is investigated using Monte Carlo analysis, and
decision rules for the selection of a proper set of budgeting strategy
and benchmark model in various scenarios are explored, with the
goal of minimizing the loss in future system throughput potential.
2 COLS (corrected ordinary least squares) produces consistent estimates based on
the second and third moments of the OLS residuals; the biased intercept of the model
is ‘‘corrected’’ based on the expected value of the composite error.
3. Experimental design

This study investigates the impact of mismeasurement by fron-
tier estimation models experimentally using Monte Carlo methods
for different budget allocation strategies and frontier estimation
models.

As a reminder, the target environment under consideration in
this paper is an organization with one central decision-making unit
operating multiple individual producers where, in particular, low-
performed producers may be strongly motivated to improve their
performance because they have higher potentials to further
improvement with less efforts than the higher ranked producers.
Indeed, the effect of organizational competence stimulates less
efficient producers to be more self-administrated for improve-
ment. Many previous studies (e.g., Benjaafar, Li, & Daskin, 2013)
have shown that organizational competence alone can lead to sub-
stantial performance improvement without significant increases in
cost in many cases. For example, plant managers who received low
rank in their scorecards are likely to be strongly motivated to
improve their performance through operational adjustment as an
alternative to costly hardware investment such as relocating
equipment, choosing optimal suppliers, reducing energy intensity
by picking a lot of low-hanging fruit in potential energy savings,
and changing modes of transportation. Thus, both allocated bud-
gets and operation competence can motivate each producers. The
answer to which effect is larger among the aforementioned two
factors in magnitude depends on particular circumstances specific
to the industry or application under consideration, such as whether
the producers are belonging to a for-profit organization or not,
what is the return rate of capital projects implemented by addi-
tionally allocated budget or what is the cost saving rate of opera-
tional adjustment projects initiated by operation competence.

Under such an organization with a one central decision making
unit operating multiple producers, two strategies are considered
for the budget allocation in this study:

� A peanut butter budgeting strategy: Given a limited budget, B,
for a single period and a collection of N producers, the n-th
producer receives a budget proportional to its best-practice
production size, Bŷn=

PN
j¼1ŷj.

� A potential-weighted budgeting strategy: In this strategy, a
budget B is allocated to each producer in proportion to its
potential for production improvement, which is calculated as
Brnŷn=

PN
j¼1rjŷj where rn denotes the efficiency rank of the n-th

producer. Note that producers with higher ranks have less
potential for further improvement because of the decreased
gap between ŷn and yn.

The ‘‘peanut butter’’ assumption is tenable and a common prac-
tice in the industry or business that are not willing to take a risk
involved in allocating their resources differentially according to
their potentials to realize. This assumption is taken, especially
when the industry or businesses has no means to measure their
achievable best practice level accurately. In such a case, they do
not know what is going to work for improving their performance
and instead, need to be across all areas, spreading their resources
too thin across everywhere.3

Meanwhile, the potential-weighted budgeting strategy is a kind
of performance-based budgeting and in this study, in particular,
budgets are allocated based on ranks. The use of efficiency scores
(SFA) or slacks (DEA) is also possible in the competitive nature
3 In the costing literature, this peanut butter strategy has been recognized as one o
traditional overhead cost allocation (or budgeting) methods where overhead costs is
allocated based on a single relationship to numerous cost centers. Some experts refer
to this traditional cost allocation approach as peanut butter accounting.
f
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but they may be more applicable to use for the solo situation. Even
worse, the efficiency scores or slacks may be unstable due to being
sensitive to the change of measurement error as shown in Sec-
tion 2. In the case that the impact of measurement errors is severe,
a performance-based budgeting leveraging on frontier models may
perform poorly. A better method, instead, could be to put the pro-
ducers into buckets that may be produced in a certain range of
ranks or efficiency scores and then, allocate the budgets to each
meaningful bucket. In fact, the rank-order approach proposed in
the paper is one possible configuration of the bucket arrangement.4

Finding the optimal bucket arrangement is beyond the scope of this
paper but the authors are interested in extending the research to
address this issue as part of future research. In the formula of poten-
tial-weighted budgeting strategy, this paper sets a higher target
(quota) for the lower ranked producers along with a higher budget
to help them achieve the goals because the lower ranked producers
have higher potentials to further improvement while the producers
who are already closer to their best practice level tend to reach a
point of diminishing returns. We also remark that there are many
ways allocating the budget based on the reverse order of perfor-
mance for the potential-weighted budgeting strategy, which
depends on the environment. In this work, a simple linear model
is used for the numerical simulation purpose.

Each budgeting strategy and performance rank calculation,
based on either the true, SFA, DEA or randomly-generated ranks,
is repeated over the specified time period. This study employed a
new time evolution mechanism in which the budgeting strategy
and performance rank calculation method influence the improve-
ment in production over time. The time evolution mechanism is
discussed in detail in Section 3.2.

3.1. Scenarios

In each experimental scenario, the performance rank of the n-th
producer where n ¼ 1;2; . . . ;N is evaluated in one of two ways:

� The true performance rank of each producer is calculated based
on the true awareness of ŷn and the value of vn.
� The performance rank of each producer is estimated based on

the lack of full awareness of ŷn and the value of vn.

Full awareness of the true performance ranks is unrealistic
because it is difficult to accurately evaluate ŷn and vn for each
producer. Although ŷn and vn are unknown, their values can be esti-
mated based on the observed data using frontier estimation models.
The use of estimated performance ranks is therefore the more real-
istic case. The estimated case can be further divided into three per-
formance rank calculation approaches, two based on the frontiers
estimated using SFA and DEA, and one in which the ranks are gen-
erated randomly. In a random ranking, each of the N! permutations
of the performance rank sequence is equally likely; this approach
can provide a lower bound of the estimation performance.

For each performance rank calculation approach, either a pea-
nut butter or potential-weighted budgeting strategy is adopted. A
total of eight experimental scenarios are thereby generated for
the Monte Carlo analysis, consisting of four different performance
rank calculation approaches (true, SFA, DEA, and randomly-gener-
ated ranks) and two budgeting strategies (peanut butter and
potential-weighted). The symbols ‘‘P’’ and ‘‘W’’ are used to denote
the peanut butter and potential-weighted budgeting strategies,
respectively, while the symbols ‘‘True’’,‘‘SFA’’, ‘‘DEA’’ and ‘‘Rnd’’
are used to distinguish the various performance rank calculation
4 The number of all partitions, BN called ‘Bell numbers’, of N number of producers
can be generated in vast ways (indeed, Bn ¼ 1

e

P1
k¼0

kn

k!
) and the rank-order is simple

but one possible partition.
approaches. For example, ‘‘P-SFA’’ represents the scenario in which
the performance rank of each producer is determined by measur-
ing the discrepancy between its actual efficiency and its SFA-
estimated frontier and the peanut butter budgeting approach is
used to assign a budget to each producer. Similarly, ‘‘W-DEA’’ indi-
cates a scenario in which the performance rank of each producer is
determined by measuring the discrepancy between its actual effi-
ciency and its DEA-estimated frontier and the potential-weighted
budgeting approach is used to assign a budget to each producer.
The true information-based performance ranking approach is
expected to outperform the other scenarios, while the approach
based on randomly-generated ranks is expected to provide a lower
bound on the performance because it does not utilize any of the
prior knowledge that is available from the observations.

3.2. Time-varying production efficiency

Slowly or quickly, firms respond to the needs and concerns of
their customers and shareholders and adopt initiatives to improve
their production. The conventional view is that such initiatives can
be implemented in two ways: (1) adjustment of external factors,
for example, through capital investment (or equivalent penalties
or incentives) (2) operational adjustment through internal effort.
As an example of capital investment, a firm may spend money to
replace inefficient equipment and facilities. Alternatively, the firm
may implement operational adjustments such as relocating facili-
ties and choosing optimal suppliers and modes of transportation.
While the value of external adjustments such as capital invest-
ments is clear, the economic potential of better business practices
or operational policies is often overlooked. Many studies have
shown that operational adjustments alone can lead to substantial
performance improvement without significant increases in cost
in many cases (Benjaafar et al., 2013).

This paper assumes that if producers are isolated from one
another, their production efficiency can be improved by two
drivers: external factors such as capital investment (or equivalent
penalties or incentives) and internal operational adjustment. Based
on this assumption, this paper derives a mathematical model of the
time-varying production efficiency. Efficiency benchmarking is
believed to trigger operational adjustment efforts by inducing each
producer to compare its inefficiency against that of other firms. For
example, if the efficiency ranking information is provided, produc-
ers with lower ranks will strive to improve their production even
without external incentives such as capital investment or penalties
imposed by headquarters. In summary, the ranking information
itself may result in improved efficiency through the initiation of
operational adjustment to pertinent producers.

As mentioned in the previous section, each producer is assumed
to employ the same production process, and the output yn is there-
fore given by the Cobb-Douglas model of Eq. (2). This assumption is
valid for each time period and can be formulated by considering
the weighted ratio of the output and inputs, although both the
input and output are increasing functions of time t in general. That
is, yn is globally normalized in time. Eq. (1) therefore provides the
best practice, which is denoted by ŷn. Note that the measurement
error in Eq. (2) is not considered in this model, as it is assumed
to be distributed uniformly throughout the time period. Therefore,
yn can be reduced as a function of the inefficiency only, which may
depend on time t:

yn ¼ ynðunÞ: ð3Þ

The inefficiency therefore depends on two time-dependent
factors, the external factor and the operational adjustment factor
(or efficiency rank), which are denoted by cn and rn, respectively:

un ¼ unðcnðtÞ; rnðtÞÞ: ð4Þ
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In what follows, a mathematical model is driven for the terms in
Eq. (4). With rn fixed, un is a function of the cost, cn, only. In reality,
cn is in certain finite domain, say ½0; cmax�, and the corresponding
inefficiency un should

0 < umin 6 un 6 umax <1

because we expect un is finite even if there is no external factor at
all, that is,

unð0Þ ¼ umax <1; unðcmaxÞ ¼ umin > 0:

For a moment, we denote e�un by fn (i.e. un ¼ � lnðfnÞ), which repre-
sents the ratio of yn and ŷn. Then fn is a function of cn as well and for
some constants fmin and fmax,

0 < fmin 6 fn 6 fmax < 1:

Now we extend the range of fn to ½0;1� and the range of un to ½0;1�.
To this end, we introduce a potential cost c, which can be obtained
from translation and extension of the range of cn so that 0 < c <1
and understood as an opportunity cost. Under assumption that fn

depends on the size of producer, we normalize the potential cost
using ŷn. Then, we have

e�un ¼ fn
c
ŷn

� �
:

At this point, the potential cost is assumed to be proportional to the
size of the producer, which may be represented by its best-practice
production.

Although it is more realistic to assume that larger firms achieve
better efficiencies than smaller firms in production, in this work,
we assume further that this returns to scale effect is relatively
small. Then there is an efficient potential function, f independent
of producers, such that

e�un ¼ f
c
ŷn

� �
; 0 < c <1:

From this definitions of f and c, clearly un goes to infinity as c
approaches 0 and the corresponding product is 0. On the other
hand, as c goes to infinity, there is no inefficiency and the produc-
tion reaches the best-practice level. In our mathematical argument
(see Section 4), no specific forms of f are required as long as f satis-
fies that

(a) f is positive and increasing function with a horizontal
asymptote y ¼ 1, and

(b) f is concave.

Condition (a) comes from the definition of f and Condition (b),
concavity of f, is a natural assumption because as the firm
approaches its best practice level, ŷn, it becomes more difficult to
further improve its performance assessment.

There are many choices for the potential function, f. Here, the
following simple rational function is used for numerical
simulations:

f
c
ŷn

� �
¼ a1ðc=ŷnÞ þ a2

a3ðc=ŷbÞ þ a4
;

where aiði ¼ 1;2;3;4Þ are coefficients to be determined from the
assumptions

f ð0Þ ¼ 0;

lim
c!1

f
c
ŷn

� �
¼ 1:

In order to determine the rational function f explicitly, we need one
more equation. Considering the rate of convergence of function f,
we define a critical cost, c� ¼ c�n=ŷn, at which the performance of
the n-th producer yields 99% of its best-practice production, i.e.,

f ðc�Þ ¼ 0:99:

From all of the stated conditions, it follows that

f
c
ŷn

� �
¼ 99c

99c þ c�ŷn
:

Note that the potential cost c for a given production level yn can be
represented as

c ¼ f
�1 yn

ŷn

� �
ŷn: ð5Þ

Now we consider the operational adjustment by introducing a
rank function:

c ¼ gðrÞŷn; 0 6 r 6 1;

where c is a potential cost. Through the rank function g, the opera-
tional adjustment can be converted to a potential cost c using the
benchmarking methodology. As the efficiency rank is assumed to
be the only information released, the operational adjustment r is
a function of rn, the rank of the n-th unit. More precisely, r is defined
as follows:

r ¼ rn � 1
N � 1

:

Recall that N is the total number of units. For simplicity in the
current discussion, it is assumed that

rj ¼ 1 if rj < rn: ð6Þ

That is, gðrÞ is the rank function assuming that the ranks of all
superior units are the same. With this assumption, we can avoid
the complexity that may be yielded from various situations such
as all the ranks of superior units are different or only some of them
are the same.

Obviously, gð0Þ ¼ 0 and gð1Þ ¼ c�a, which is the maximum
potential cost achievable through the operational adjustment.
Furthermore, it is a natural assumption that the effort of the unit
increases exponentially as its rank decreases. By adopting the form

gðrÞ ¼ aðebr � 1Þ; a; b > 0;

the following function is obtained:

gðrÞ ¼ c�a
q2

1� 2q
1� q

q

� �2r

� 1

 !
:

Here, 0 < q < 1=2 is a parameter that represents the factional
increment in the potential cost, which satisfies

g
1
2

� �
¼ qc�a:

In the general case, without assuming (6), we define the normalized
potential cost due to the operational adjustment, ca=ŷn, as a mean of
gðrn�j

N�1Þ for j ¼ 1;2; . . . ; rn;

ca

ŷn
¼ 1

rn

Xrn

j¼1

g
rn � j
N � 1

� �
: ð7Þ

Note that this definition can be understood as an approximation of
the integral of g over ½0; r�.

It is now possible to derive a recursion relation for ynðtiÞ, the
production of the n-th producer at t ¼ ti. Suppose that the rank
of the n-th producer is rn and an incentive (or capital investment)
cnðtiÞ is assigned to this producer. The total potential cost for the
n-th producer then increases to



Fig. 1. Performance comparison (SFA vs. DEA).
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f
�1 ynðtiÞ

ŷn

� �
þ 1

rn

Xrn

j¼1

g
rn � j
N � 1

� �
þ cnðtiÞ

ŷn

 !
ŷn:

It therefore follows that

ynðtiþ1Þ ¼ f f
�1 ynðtiÞ

ŷn

� �
þ 1

rn

Xrn

j¼1

g
rn � j
N � 1

� �
þ cnðtiÞ

ŷn

 !
ŷn:

Note that the parameters q and c�a that appear in the rank function
are related to the circumstances of the system and the assigned
budget, B. A smaller value of q may represent a relatively aggressive
environment in that units with lower ranks are expected to expend
more effort compared to less competitive circumstances. As for the
choice of c�a;50% of the average of cn=ŷn is adopted in our experi-
ments. The critical cost c� represents the current state of ineffi-
ciency as well as the slope of the potential function f. For
example, a sufficiently large value of c� yields a certain initial stage,
but the marginal potential cost is higher. In this case, a long time
period may be required to reach the best-practice level. In our
experiments, c� is chosen so that yn approaches the best-practice
level after 10 periods.

4. Results

The results of the Monte Carlo analysis are summarized in
Figs. 2–5. Each scenario has a time horizon consisting of 10 deci-
sion epochs in which the performance rank of each producer is
measured using the specified rank calculation approach and the
budget is allocated based on the specified budgeting strategy.

The budget B for a single period is assumed to be fixed at 1% of
the total best-practice production by the producers, 1%�

PN
i¼1ŷi.

The maximal potential cost c�a and q values in the operational
adjustment are taken to be 0:005 and 1=3, respectively. A value
of 0:005 is obtained from 50% of the mean of the assigned normal-
ized budget. In addition, we take c� ¼ 0:2, which is computed from
the average of e�un and the total cost gained after 10 periods.

Each scenario was ranked based on the total of production by all
of the producers over the time horizon for the specified scenario.
The measured rank was used as a performance metric to evaluate
the individual scenario.

Eight scenarios were used for the Monte Carlo analysis (two
budgeting strategies and four performance rank calculation
approaches), and three factors were varied (10 inefficiency distri-
butions, 15 measurement error distributions and 9 sample sizes),
producing a total of 10;800 cells; 25 replications were performed
for each cell.

Several interesting results were obtained. First, the peanut but-
ter strategy performs better than the potential-weighted strategy
in improving the overall system throughput in the presence of rel-
atively high measurement errors, but the result is reversed for
small measurement errors. As illustrated in Fig. 1, the potential-
weighted budgeting strategy with SFA (line with solid circles) out-
performs the peanut butter strategies based on SFA (line with
empty circles) and DEA (line with empty triangles) up to
r2

u ¼ 0:15, but after that point, the results are reversed. These
experimental results demonstrate that the potential-weighted
strategy outperforms the peanut butter strategy when the ranking
information is accurate, while the peanut butter strategy is
preferable to the potential-weighted strategy in the presence of
relatively high measurement errors. These simulation results can
be understood qualitatively by considering two extreme cases:
when the true ranking information is known and when the rank
of each producer is generated randomly.

In the first case, in which the accurate ranking information is
released, the comparison between the peanut butter and
potential-weighted budgeting strategies can be generalized to
the problem of seeking the optimal budgeting methods, which is
related to the following optimization problem in which the impact
of operation adjustments is ignored:

max
cþ

Fðc0 þ cþÞ

s:t:
XN

j¼1

cþj ¼ C;

where

Fðc0 þ cþÞ ¼
XN

j¼1

f
c0j þ cþj

ŷj

 !
ŷj:

c0 ¼ ðc01; c02; . . . ; c0NÞ is the vector of the potential costs of the
producers at the initial time, and cþ ¼ ðcþ1 ; cþ2 ; . . . ; cþNÞ represents
the costs gained during the entire period, where f is the potential
function and ŷn is the best-practice level of the n-th producer.

It can be shown using the method of Lagrange multipliers that F
attains its maximum when all of the weighted potential costs,
ðc0n þ cþn Þ=ŷn are the same. Indeed, from

rcþFðc0 þ cþÞ þ krcþ
XN

j¼1

cþj � C

 !
¼ 0;

we have

f 0
c0n þ cþn

ŷn

� �
þ k ¼ 0; for all n:

Because f is a one-to-one function, c0n þ cþn
� �

=ŷn should be the same
for all n. Let c0n þ cþn

� �
=ŷn ¼ b. Then

cþn ¼ bŷn � c0n; ð8Þ

C ¼ b
XN

j¼1

ŷj �
XN

j¼1

c0j:

Substituting b ¼ C þ
PN

j¼1c0j

� �.PN
j¼1ŷj into (8) yields

cþn ¼
ŷnPN
j¼1ŷj

C þ
XN

j¼1

c0j

 !
� c0n for all n:

The total performance, FðcÞ, is therefore expected to increase as the
variation of fcj=ŷjg decreases. For a given set of potentials fcj=ŷjg
arranged in non-decreasing order, sufficiently small perturbations
fdjg can be considered so that the order of fðcj þ djÞ=ŷjg is preserved
and

XN

i¼j

dj ¼ 0;

dj P 0 1 6 j 6 J;

dj < 0 J þ 1 6 j 6 N:
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Clearly, the variance of fcj=ŷjg exceeds the variance of fðci þ diÞ=ŷjg.
As f 0 is non-increasing,

d 	 rFðcÞ ¼
XJ

j¼1

djf
0 cj

ŷj

� �
�
XN

j¼Jþ1

ð�djÞf 0
cj

ŷj

� �

P
XJ

j¼1

djf
0 cJ

ŷJ

� �
�
XN

j¼Jþ1

ð�djÞf 0 cJ

ŷJ

� �
¼ 0:

d ¼ ðd1; d2; . . . ; dNÞ is therefore an ascent direction and for suffi-
ciently small d,

FðcÞ 6 Fðcþ dÞ:

From this argument, one can deduce that the total performance
with a potential-weighted strategy is higher than that with a pea-
nut butter strategy. Indeed, for a given initial data or potentials c0,
the variance of fðc0j þ cþj Þ=ŷjg is fixed when a peanut butter
approach is applied. In the case of potential-weighed strategy,
however, fcþj =ŷjg has a non-increasing order, which yields a smal-
ler variance under the assumption of reasonable weights that are not
too large compared to the differences in the potentials. In this case,
superior total performance can be expected, as discussed above.

In real-world applications, however, the true ranks are often
unknown; although the performance of each producer can be
tracked using SFA or DEA, ranking information will be inaccurate
due to a lack of information or large measurement errors. In this
case, the aforementioned simulation results show that a peanut
butter approach is superior to a potential-weighted strategy, as
stated earlier. It is now assumed that the ranking information is
entirely unknown or inaccurate, and each rank is therefore
determined randomly.

To make the presentation explicit, a permutation ck : i! j is
introduced, where i is the index of the producer and ckðiÞ is the
index of producer whose assigned ranking is the true ranking of
the i-th producer in the k-th period. In the case in which the true
ranking is known, ck is the identity transformation. In the case in
which the rank is chosen at random, the expectation of ckðiÞ over
all possible permutations is constant for all i and k, and

E½cþckðiÞ
� ¼ pki; 1 6 i 6 N;1 6 k 6 M; ð9Þ

where cþckðiÞ
is the cost assigned to i-th producer through a potential-

weighed strategy based on its assigned rank and pki is the cost
assigned to the i-th unit using the peanut butter approach for period
k. Let Iþ and I� be disjoint subsets of f1;2; . . . ;Ng such that

cþcðiÞ � pi P 0; if i 2 Iþ;

cþcðiÞ � pi < 0; if i 2 I�;

where each entries of cþ ¼ fcþcðiÞg and p ¼ fpig represent the total
assigned costs to i-th unit during whole period using the poten-
tial-weighted strategy based on cðiÞ ¼ ðc1ðiÞ; c2ðiÞ; . . . ; cMðiÞÞ and
the peanut butter strategy, respectively. Then,

Fðc0 þ cþÞ � Fðc0 þ pÞ

¼
XN

i¼1

Z c0iþcþcðiÞ

c0i

f 0
x
ŷi

� �
dx�

Z c0iþpi

c0i

f 0
x
ŷi

� �
dx

" #

¼
X
i2Iþ

Z c0iþcþcðiÞ

c0iþpi

f 0
x
ŷi

� �
dxþ

X
i2I�

Z c0iþcþcðiÞ

c0iþpi

f 0
x
ŷi

� �
dx

6

X
i2Iþ
ðcþcðiÞ � piÞf

0 c0iþpi
ŷi

� �

�
X
i2I�

pi � cþcðiÞ
� �

f 0 c0iþpi
ŷi

� �

¼
XN

i¼1

ðcþcðiÞ � piÞf
0 c0iþpi

ŷi

� �
:

The convexity of f is used in the above equations. By taking the
expectation over all permutations, the following can be obtained
from Eq. (9):

E½Fðc0 þ cþÞ � Fðc0 þ pÞ� 6
XN

i¼1

ðE½cþcðiÞ� � piÞf
0 c0i þ pi

ŷi

� �
¼ 0;

or

E½Fðc0 þ cþÞ� 6 Fðc0 þ pÞ:

Hence, we are able to conclude that the peanut butter approach is
superior to any potential-weighted strategies in the mean sense
as long as the ranking information is entirely unknown.

As mentioned earlier, the accuracy of SFA and DEA in determin-
ing the rank of each producer lies between the accuracy of the true
and random rankings. Hence, one can conclude that the potential-
weighted strategy performs better than a peanut butter strategy
when the measurement error is sufficiently small; otherwise, a
peanut butter strategy may yield better performance.

Note that a potential-weighed budgeting strategy coupled with
DEA (line with solid triangles) exhibits the worst results, regardless
of the variation in r2

u, as shown in Fig. 1. This poor performance
occurs because the DEA-based ranking method generates many
ties in its ranking of producers. The potential-weighed budget allo-
cation with many ties in the ranking is likely to allocate
cþ ¼ cþ1 ; c

þ
2 ; . . . ; cþN

� �
in a relatively arbitrary manner to other cases

and drive the overall system performance in a direction other than
the optimal gradient direction.

The second interesting result is that the use of frontier estima-
tion models is beneficial even for cases with relatively high
measurement errors compared to using random ranking methods.
Figs. 2–5 illustrate this result. Fig. 2 shows that the cases with
accurate ranking information and the potential-weighted budget
strategy (line with solid rectangles) always outperform the cases
with SFA-estimated ranking information and the potential-
weighted strategy (line with solid circles). Similarly, the cases with
accurate ranking information and the peanut butter strategy (line
with empty rectangles) always exhibit better results compared to
the cases with SFA-estimated ranking information and the peanut
butter strategy (line with empty circles). This result implies that
the release of accurate ranking information always leads to greater
performance improvement. Fig. 3 shows that the use of SFA-based
estimation provides better results compared to those that can be
obtained without using the model (equivalent to using a random
ranking method), regardless of the budgeting strategy. This result
is in accordance with the concept that the efforts of building esti-
mation models are worthwhile when compared to DNA (‘‘doing
nothing analytical’’). Similarly, Figs. 4 and 5 show that the DEA-
based estimation approach falls between the cases using accurate
ranking information and the cases using randomly-generated
ranks.
Fig. 2. Performance comparison (SFA vs. true ranking).



Fig. 3. Performance comparison (SFA vs. random ranking).

Fig. 4. Performance comparison (DEA vs. true ranking).

Fig. 5. Performance comparison (DEA vs. random ranking).
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The third unexpected finding is that SFA performs better than
DEA under peanut butter strategies, but the result is reversed as
the measurement errors increase. In the case with high measure-
ment errors, DEA tends to envelop points beyond the original pro-
duction frontier due to positive measurement errors, resulting in
an overestimated frontier. The DEA method also tends to generate
many correlations in its ranking of the producers. The association
between correlations in the ranking and an overestimated frontier
may further increase the budget to certain producers. Fig. 1 con-
firms these speculations. The approach with SFA-estimated rank-
ing information outperforms approaches with DEA-estimated
ranking information, regardless of the budgeting strategy. As the
measurement errors increase, however, the DEA approach
becomes superior to approaches with SFA-estimated ranking infor-
mation in cases using a peanut butter strategy. This result is in
accordance with the first finding, which shows that peanut butter
strategies perform better than potential-weighted strategies in the
presence of relatively high measurement errors.
5. Conclusions

In this paper, a Monte Carlo analysis was performed to compare
the overall system throughput in various experimental scenarios
generated by pairing various multi-period budgeting strategies
with two production frontier estimation models, SFA and DEA. Pre-
viously published studies only compared the accuracy of SFA and
DEA efficiency estimation. This paper extended these studies by
considering how mismeasurement by frontier estimation models
impacts the capital budget allocation and final system perfor-
mance. Decision rules are also provided for the selection of the
most appropriate budgeting strategy and benchmark model for a
particular set of circumstances.

One key conclusion from the analysis is that the selection of a
proper budgeting strategy and benchmark model can lead to a sub-
stantial improvement in the system throughput. Three results that
may be relevant for managers who are interested in performance-
based budgeting are as follows: (1) a potential-weighted strategy
performs better than a peanut butter strategy in improving the
overall system throughput when the performance measurement
errors are relatively small, but the result is reversed as the mea-
surement error increases; (2) the use of frontier estimation models
is beneficial even in cases with relatively high measurement errors
compared to using randomly-generated ranks; and (3) SFA outper-
forms DEA regardless of the budgeting strategy for small measure-
ment errors, but the result is reversed as the measurement errors
increase.

Future studies should expand the scope of this work by further
investigating optimal budget allocation strategies that may
improve the overall system throughput much faster than the pea-
nut butter or potential-weighted strategies proposed in this paper.
As shown in Section 4, cþ ¼ cþ1 ; c

þ
2 ; . . . ; cþN

� �
, the optimal budget for

the entire period, should be chosen to lie between two vectors
determined by the peanut butter and potential-weighted strate-
gies, in such a way that c0n þ cþn

� �
=ŷn is the same for all n. However,

the challenge is that ŷn varies over time for realistic environments
due to constantly-evolving technology and, more importantly, the
dynamics of competition between producers. In addition, the inef-
ficiency and measurement error distributions are uncertain in
real-world scenarios. As a result, the problem is more complicated
compared to the case in which ŷn is constant over time. Future
studies should therefore extend the experiments in this paper to
include the optimization of budget allocation by balancing the
trade-off between peanut butter and potential-weighted strategies
by evolving the current rank-order based bucketing method in the
presence of time-varying best-practice frontier lines.

In addition, the authors admit that the assumption of using an
identical measurement error distribution and an inefficiency
distribution over time is not realistic in industry because it is
conceivable that the distributions of measurement error and inef-
ficiency may change dynamically over time. The dynamics behind
time-varying inefficiency and measurement error distributions
needs to be taken into account and accordingly, there is a need
to develop a new dynamic SFA model to capture the dynamics.
The authors are interested to extend the research to address this
issue as part of future works.
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