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a b s t r a c t

In this paper, we study the Gerber–Shiu discounted penalty function in the classical risk
model with impulsive dividends. When the surplus process hits a barrier b, the dividend
will be paid and the surplus is reduced to a level a. An integro-differential equation for the
Gerber–Shiu discounted penalty function is derived by analyzing the evolution of the sur-
plus process and it is solved by Dickson–Hipp operator method. For this process, we also
investigate the Laplace transform of the time of ruin, the distribution of the surplus imme-
diately before ruin and the deficit at ruin. These quantities for the special case where the
claim size is exponentially distributed are obtained explicitly. Moreover, the distribution
of the number of dividends is derived.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

To give a rigorousmathematical formulation of the problem,we startwith a filtered probability space

Ω, F , {Ft}t≥0, P


.

In the absence of dividends, the surplus process Xt of an insurance company is given by

X(t) =

x + ct −

N(t)
i=1

Yi, if x < b

a, if x = b
(1.1)

where x ≥ 0 is the initial surplus, c > 0 is the premium rate, {N(t)} is a Poisson process with intensity λ > 0, {Yi} is an i.i.d.
sequence of strictly positive random variables with distribution function Q and probability density function q. The claim
sizes {Yi} and the claim arrival process {N(t)} are assumed to be independent. We also assume that E[Yi] = µ < ∞. Now,
we enrich the model and consider the dividend payments. When the fixed cost is taken into account, the strategy becomes
impulsive. The controlled surplus process evolves as follows.Whenever the surplus reaches a barrier b it is reduced to a level
a through a dividend payment. If we want to indicate that the initial surplus is x, we will write Px and Ex for the probability
measure and the expectation, respectively. The time of ruin is defined by

τ = inf{t ≥ 0 : Xt ≤ 0}. (1.2)
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This model has been derived by Bai and Guo (2010) as the surplus process corresponding to the optimal dividend payoff
(see Bai and Guo, 2010 for details).

We now introduce the Gerber–Shiu discounted penalty function

m(x) = Ex[e−δτω(X(τ−), |X(τ )|)I(τ < ∞)] (1.3)

where δ > 0 is interpreted as the force of interest, ω is a nonnegative function on R2
+
, and I(A) is the indicator function

of an event A. A number of particular cases of the discounted penalty function lead to important quantities of interest in
risk theory. For instance, setting ω ≡ 1, we obtain the Laplace transform of the time of ruin. When δ = 0 and ω ≡ 1, the
discounted penalty function reduces to the probability of ultimate ruin.

Since Gerber and Shiu (1998), the Gerber–Shiu function was studied by many authors. A large number of papers
extended the study to more practical situations by introducing certain economic factors such as dividends. The study
of the Gerber–Shiu function of the classical risk model within the framework of the so-called threshold or the barrier
dividend strategy has received considerable attention in the actuarial literature. For example, Lin et al. (2003) analyzed the
Gerber–Shiu discounted penalty function of the classical compound Poisson risk model with a constant dividend barrier.
When the distribution of the claim sizes is exponential or a mixture of two exponentials, explicit solution was obtained. Lin
and Pavlova (2006) investigated the expected penalty function with a threshold dividend strategy. Lin and Sendova (2008)
examined the expected discounted penalty function in a multi-threshold compound Poisson risk model. Cai and Dickson
(2002) considered the corresponding problem of the classical surplus process modified by the inclusion of interest. Yuen
et al. (2007) studied the problem for the risk process with interest and a constant dividend barrier.

However, in these papers, it was assumed that there were no transaction costs when dividends were paid out which
are different from ours. Firstly, because of the fixed transaction cost, the optimal strategy obtained by Bai and Guo (2010) is
impulsive. On the other hand, because of the impulsive nature of the dividend strategy, the transaction cost can be combined
with the dividend strategy by deducting this cost from the dividend. Secondly, the evolution of the surplus process differs
from those in the references. In the case that the two thresholds tend to infinity, the surplus process is the same as the
classical risk model. In the case where the lower threshold becomes 0, the evolution of the surplus process is the same
as the one under barrier strategy. None of these work examines the Gerber–Shiu function under impulsive strategy. This
motivates us to study the problem in this paper.

The rest of the paper is organized as follows. In Section 2, we obtain an integro-differential equation form(x). In Section 3,
it is shown that the Gerber–Shiu discounted penalty function under the impulsive strategy is a linear combination of a
solution to a homogeneous integro-differential equation and theGerber–Shiu discounted penalty functionwithout dividend.
In Section 4, the Laplace transform of the time of ruin, the distribution of the surplus immediately before ruin and the deficit
at ruin are obtained. The distribution of the number of dividend payments is presented in Section 5.

2. An integro-differential equation

In this section, we derive an integro-differential equation form(x).

Proposition 2.1. The Gerber–Shiu function m satisfies the following ODE

cm′(x) − (λ + δ)m(x) + λ

 x

0
m(x − y)dQ (y) + λ


∞

x
ω(x, y − x)dQ (y) = 0, 0 ≤ x ≤ b, (2.1)

with boundary condition

m(b) = m(a). (2.2)

Proof. Let t0 =
b−x
c and ti = t0 + i b−a

c , i ≥ 1. Without claims, the surplus process reaches barrier b at each ti. For simplicity
of notation, we denote

ξ = e−δτω(X(τ−), |X(τ )|)I(τ < ∞).

Let τ1 be the arrival time of the first claim. Then,m(x) =


∞

i=1 Ji, where

J0 = Ex(ξ I(τ1 < t0)) and Ji = Ex(ξ I(ti−1 ≤ τ1 < ti)), ∀ i ≥ 1.

According to the cases of ruin or not, we can write J0 as

J0 =

 t0

0


e−δtm(x + ct − y)I(x + ct − y ≥ 0)Q (dy)λe−λtdt

+

 t0

0


e−δtω(x + ct, y − x − ct)I(x + ct − y < 0)Q (dy)λe−λtdt.
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Letting s = x + ct , we get

J0 =

 b

x


∞

0

λ

c
I(s − x, y)Q (dy)ds,

where

I(s, y) = e−
λ+δ
c s m(s − y)1y<s + ω(s, y − s)1y>s


.

Similarly, for i ≥ 0, we can write

Ji =

 b

a


∞

0

λ

c
I(s − a − cti−1, y)Q (dy)ds.

Taking summation over i ≥ 1 and i = 0, we get

m(x) =


∞

0

 b

a


λ

c
1x<s<b + κ


I(s − x, y)dsQ (dy), (2.3)

where κ = λc−1

1 − e−(λ+δ)(b−a)/c

−1 e−
λ+δ
c (b−a).

Taking derivative on both sides of (2.3), we obtain the expression form′(x). Eq. (2.1) is then verified by substituting (2.3)
into this expression. The boundary condition (2.2) is trivial since the surplus process is reduced to level a once it reaches the
barrier b. �

Remark 2.1. Lin et al. (2003) studied a similar model with continuous dividend strategy rather than an impulsive one. The
difference in the dividend strategy leads to different boundary conditions. Instead of (2.2), there is only one boundary in
their equation and the solution satisfies Neumann boundary condition.

3. Solution form(x)

Let u(x) be a specific solution to (2.1). Let v(x) be a solution to the homogeneous version of (2.1), namely,

cv′(x) − (λ + δ)v(x) + λ

 x

0
v(x − y)dQ (y) = 0. (3.1)

Then, considering the boundary condition (2.2), we can writem(x) as follows:

m(x) = u(x) +
u(a) − u(b)
v(b) − v(a)

v(x), 0 ≤ x ≤ b. (3.2)

Now we derive the expressions of u and v. The Dickson–Hipp operator is used to facilitate solving integro-differential
equation (2.1). As in Dickson and Hipp (2001), we define an operator Ts of a real-valued function f (x).

Definition 3.1. For any integrable function f defined on [0, ∞) and s ≥ 0, the Dickson–Hipp transform of f is given by

Tsf (x) = esx


∞

x
e−syf (y)dy, x ≥ 0.

The following identities will be useful in our calculations. We collect them here for the convenience of the reader. The
proof of (i) can be found in Section 3 of Dickson and Hipp (2001), and that of (ii) can be found in Lemma A.2 in Cai et al.
(2009). The identity (iii) can be checked by simple calculation.

Proposition 3.1. (i) For any s1, s2 > 0, we have Ts1Ts2 f (x) =
Ts2 f (x)−Ts1 f (x)

s1−s2
.

(ii) Ts{f ∗ g}(x) = g(s)Tsf (x) + Tsg ∗ f (x), where the notation f ∗ g stands for the convolution of f and g,g(x) is the Laplace
transform of g.

(iii) (sI − D)Tsf (x) = f (x), where the notation I stands for the identify operator and D for the differentiation operator.

Theorem 3.1. The solution m(x) to (2.1) is given by (3.2) with

u = L−1
 λLTρζ

c − λLTρq


and v(x) = L−1

 cs
λ + δ − cs − λLQ (s)


, (3.3)

where ζ (x) =


∞

x ω(x, y − x)dQ (y) and L−1 denotes the inverse Laplace transform.
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Proof. We rewrite Eq. (2.1) in terms of operators:
λ + δ

c
I − D


u(x) =

λ

c
u ∗ q(x) +

λ

c
ζ (x). (3.4)

Applying Proposition 3.1(iii), we have

u(x) =
λ

c
T λ+δ

c
{u ∗ q + ζ }(x). (3.5)

Note that, by (ii) of Proposition 3.1,

Tρ{u ∗ q + ζ }(x) =q(ρ)Tρu(x) + Tρq ∗ u(x) + Tρζ (x), (3.6)

where the constant ρ is the solution to the following Lundberg fundamental equation

λ

c
q(ρ) =

λ + δ

c
− ρ. (3.7)

Hence, by (3.5) and (i) of Proposition 3.1, we have

u(x) =
λ

c


Tρ{u ∗ q + ζ }(x) −


λ + δ

c
− ρ


TρT λ+δ

c
{u ∗ q + ζ }(x)



=
λ

c

q(ρ)Tρu(x) + Tρq ∗ u(x) + Tρζ (x) −


λ + δ

c
− ρ


TρT λ+δ

c
{u ∗ q + ζ }(x)


. (3.8)

In view of (3.5) and (3.7), we obtain

q(ρ)Tρu(x) −


λ + δ

c
− ρ


TρT λ+δ

c
{u ∗ q + ζ }(x) = 0.

Hence, u(x) satisfies the defective renewal equation

u(x) =
λ

c
{Tρq ∗ u(x) + Tρζ (x)}.

Taking the Laplace transforms, we haveu(s) =
λ
cu(s)LTρq(s) +

λ
c LTρζ (s), where L denotes the Laplace transform. Thus,

u(s) =
λLTρζ (s)

c − λLTρq(s)
. (3.9)

u is obtained by taking the inverse Laplace transform.
We now give an explicit solution to the homogeneous equation (3.1). Taking the Laplace transform, we get

cs(1 + ṽ(s)) − (λ + δ)ṽ(s) + λṽ(s)Q̃ (s) = 0.

This implies ṽ(s) =
cs

λ+δ−cs−λQ̃ (s)
. Consequently, v is obtained by the inverse Laplace transform. �

Theorem 3.2. When the claims are exponentially distributed with mean 1/β , we have for 0 ≤ x ≤ b,

m(x) = u(x) +
u(a) − u(b)
v(b) − v(a)

((β + d+)ed+x
− (β + d−)ed−x) (3.10)

where

u(x) = L−1


λ(β + ρ)(β + s)
(s − ρ)[c(β + ρ)(β + s) − λβ]

[ζ (ρ) − ζ̃ (s)]

, (3.11)

and

v(x) = (β + d+)ed+x
− (β + d−)ed−x, (3.12)

with

d± =
λ + δ − βc ±


(λ + δ − βc)2 + 4βcδ
2c

. (3.13)
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Proof. When Q is the distribution function of an exponential random variable with mean 1/β , we have

LTρq(s) =
Lq(ρ) − Lq(s)

s − ρ
=

β

(β + ρ)(β + s)

where the first equality resulted from that fact that Laplace transform is a special case of the Dickson–Hipp operator.
Similarly,

LTρζ (s) =
Lζ (ρ) − Lζ (s)

s − ρ
=

ζ (ρ) −ζ (s)
s − ρ

.

Substituting the expression for LTρq(s) and LTρζ (s) in (3.9) and rearranging terms, we have (3.11) holds.
Multiplying both sides of (3.1) by βI + D gives

cv′′(x) + (βc − (λ + δ))v′(x) − δβv(x) = 0.

The solution to this ordinary differential equation is given by

v(x) = C1ed+x
+ C2ed−x. (3.14)

Setting x = 0 in (3.1) and using (3.14), we get C1
β+d+

+
C2

β+d−
= 0. Taking C1 = β + d+, we get (3.12). In view of (3.2),

(3.3) and (3.12), we see that (3.10) and (3.11) hold. �

4. On the time value of ruin τ, the surplus before ruin X(τ−), and the deficit at ruin X(τ)

In this section, we calculate some actuarial quantities in the case where the claims are exponentially distributed. First,
we consider the ruin time distribution.

Proposition 4.1. The Laplace transform of the ruin time is given by

Ee−δτ
= u(x) +

u(a) − u(b)
v(b) − v(a)

v(x), 0 ≤ x ≤ b, (4.1)

where v is given by (3.12) and

u(x) =
λ

c(β + ρ)
e−(β−

λβ
c(β+ρ)

)x
. (4.2)

As a consequence, we have P(τ < ∞) = 1.

Proof. We now recall (1.3) and apply Theorem 3.2 to the case ω = 1. In this setting, ζ (x) = e−βx and hence

u(s) =
λ

c(β + ρ)(β + s) − λβ
. (4.3)

u(x) is obtained by taking the inverse Laplace transform on both sides of (4.3).m(x) is then obtained from (3.2).
Taking δ = 0 in (3.7) and using the fact that q̃(ρ) = (β + ρ)−1, we get β + ρ =

λ
c . This implies P(τ < ∞) = m(x) = 1.

(4.1) then follows from (3.2). �

Remark 4.1. With the explicit representation of the solution, it can be proved that Laplace transform of the ruin time in our
setting is larger that those of Lin et al. (2003). Hence, the ruin time in our model is stochastically smaller than that of Lin
et al. (2003). This confirms with our intuition because our model corresponds to the optimal strategy with transaction cost
while for that of Lin et al. (2003) no transaction cost need to be paid.

We next turn our attention to the distribution of the surplus X(τ−) before ruin.

Proposition 4.2. For any bounded continuous function ω1, we have

Exω1(X(τ−)) =


λβ

cβ − λ
−

λ2

c(cβ − λ)
e( λ

c −β)x


ζ̃ (0) −

 x

0


λβ

cβ − λ
−

λ2

c(cβ − λ)
e( λ

c −β)(x−y)


ζ (y)dy

+
ur(a) − ur(b)

λe
λ−cβ

c a
− λe

λ−cβ
c b

(cβ − λe
λ−cβ

c x), (4.4)

where ζ (x) = ω1(x)e−βx and

ur(x) =


λβ

cβ − λ
−

λ2

c(cβ − λ)
e( λ

c −β)x


ζ̃ (0) −

 x

0


λβ

cβ − λ
−

λ2

c(cβ − λ)
e( λ

c −β)(x−y)


ζ (y)dy. (4.5)
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Proof. Taking δ = 0 andω(x1, x2) = ω1(x1), the corresponding Gerber–Shiu functionmr(x) is given by (3.10) with vr being
given by (3.14), and

ur(s) =
λ(β + s)

s[c(β + s) − λ]
[ζ (0) −ζ (s)]. (4.6)

(4.5) follows by taking the inverse Laplace transform on (4.6). An easy calculation of d± implies

vr(x) = cβ − λe
λ−cβ

c x. (4.7)

(4.4) then follows directly. �

Finally, we consider the deficit at ruin.

Proposition 4.3. The distribution function of the deficit is given by

P(|X(τ )| ≤ z) =
λ(1 − e−βz)

cβ
e−(β−

λ
c )x

−
λe(λ/c−β)x−βz

cβ − λ


ex∧z

− 1


+
cβ − λe

λ−cβ
c x

λe
λ−cβ

c a
− λe

λ−cβ
c b


λ(1 − e−βz)

cβ
(e−(β−

λ
c )a

− e−(β−
λ
c )b)

+
λe−βz

c


e(λ/c−β)b

β − λ/c


eb∧z

− 1

−

e(λ/c−β)a

β − λ/c


ea∧z

− 1


. (4.8)

Proof. When δ = 0 andω(x1, x2) = I{x2≤z}, the Gerber–Shiu functionmd(x) as a function of z gives the distribution function
of the deficit at ruin. Note that

ud(s) =
λ[s − (s + β)e−βz

+ βe−(s+β)z
]

sβ[c(β + s) − λ]

=

λ
c

s + β −
λ
c


1 − e−βz

β
− e−βz 1 − e−sz

s


. (4.9)

Taking the inverse Laplace transform on both sides gives

ud(x) =
λ(1 − e−βz)

cβ
e−(β−

λ
c )x

−
λe−βz

c

 x

0
e−(β−

λ
c )(x−u)I{u≤z}du. (4.10)

Note that vd = vr is given in (4.7). The identity (4.8) then follows from (3.10). �

As a consequence of the proposition, we can calculate the average deficit.

Corollary 4.1. The first two moments of |X(τ )| are given by

Ex|X(τ )| −
λ

cβ(β + ρ)
e−(β−

λβ
c(β+ρ)

)x
=

λ
cβ(β+ρ)

e−(β−
λβ

c(β+ρ)
)a

−
λ

cβ(β+ρ)
e−(β−

λβ
c(β+ρ)

)b

λe
λ−cβ

c a
− λe

λ−cβ
c b

(cβ − λe
λ−cβ

c x). (4.11)

5. The number of dividend payments before the time of ruin

Let N denote the number of dividend payments before the time of ruin. The goal of this section to find the probability
distribution of N . To this end, we define the stopping time T ′ as the first time when the surplus reaches the level b.

Let

φ(x) = Px(T ′ < ∞) and φ(x) = 1 − φ(x).

First, we give an explicit expression for φ(x).

Proposition 5.1.

φ(x) =


exp


λ + βc

c
b


− 1
−1 

exp


λ + βc
c

x


− 1


. (5.1)
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Proof. We express the probability through conditioning on the time and amount of the first claim.

φ(x) = Px(x + cτ1 ≥ b) + Px(x + cτ1 < b, T ′ < ∞)

= exp


−
λ

c
(b − x)


+

 (b−x)/c

0

 x+ct

0
φ(x + ct − s)βe−βsdsλe−λtdt.

By a change of variable, we get

φ(x) = exp


−
λ

c
(b − x)


+

 x

0
φ(u)I(x, u)du +

 b

x
φ(u)J(x, u)du, (5.2)

where

I(x, u) =
βλe−β(x−u)

λ + βc


1 − exp


−

λ + βc
c

(b − x)


and

J(x, u) =
βλe−β(x−u)

λ + βc


exp


−

λ + βc
c

(u − x)


− exp


−
λ + βc

c
(u − x)


.

Taking derivative on both sides of the above equation, we get an expression for φ′(x). Substituting (5.2) into this expression,
we obtain

φ′(x) =
λ

c
φ(x) −

βλe−βx

c

 x

0
φ(u)eβudu. (5.3)

Again taking derivative on both sides of the above equation, we arrive at

φ′′(x) =
λ

c
φ′(x) + β

βλe−βx

c

 x

0
φ(u)eβudu −

βλ

c
φ(x). (5.4)

Substituting (5.3) into above equation yields φ′′(x) =
λ−cβ

c φ′(x). Thus,

φ(x) = D1 exp


λ + βc
c

x


+ D2. (5.5)

The boundary conditions φ(b) = 1 and φ(0) = 1 then imply (5.1). �

Theorem 5.1. Suppose that X(0) = x. Then

P(N = n) =


φ(x), n = 0,
φ(x)φ(a)[φ(a)]n−1, n = 1, 2, . . . .

(5.6)

As a consequence, we have

E(N) =
φ(x)

φ(a)
and Var(N) =

φ(x)(φ(x) + φ(a))

φ(a)2
.

Proof. Suppose that n = 0. The event N = 0 means that no dividend payment happens and ruin occurs in the first period.
Hence, Px(N = 0) = Px(T ′

= ∞) = φ(x).
For n ≥ 1, the event N = n means that ruin occurs in the (n + 1)th period. This probability is then clearly given by

φ(x)φ(a)n−1φ̄(a). �
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